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Background: Wi-Fi Security

› 1999: Wired Equivalent Privacy (WEP)

RC4 with 40 (!) or 104 bits key 

Broken in 2001 [FMS01]

Deprecated 2004

› 2003: Wi-Fi Protected Access (WPA)

› 2004: Wi-Fi Protected Access 2 (WPA2)

Allows offline password brute-force

KRACK and Kraken attack [VP][2017-8]
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Background: Dragonfly in WPA3 and EAP-pwd

3

Negotiate 

session key
Provide mutual 

authentication

Prevent offline 

dictionary attacks

= Password Authenticated Key Exchange (PAKE)



Our Results [VR 20]

› Comprehensive analysis of WPA3

First attacks against the new protocol 

Break most of the security guarantees 

Provide PoC for attacks

› Recommendations for fixing the crypto design 

Resulting in draft for new protocol version
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Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 +𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 +𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃
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Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 +𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 +𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Convert password to 

group element P
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Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 +𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃
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𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Commit(𝑠𝐵 , 𝐸𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
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Commit(𝑠𝐴, 𝐸𝐴)
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𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Commit(𝑠𝐵 , 𝐸𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)

Negotiate shared key
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Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)
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Confirm(𝑐𝐴)

Confirm(𝑐𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)

Confirm peer negotiated same key 
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Confirm(𝑐𝐴)

Confirm(𝑐𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)How to derive P from a password?

1. MODP groups

2. Elliptic curves
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Confirm(𝑐𝐴)

Confirm(𝑐𝐵)
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𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)How to derive P from a password?

1. MODP groups

2. Elliptic curves



Elliptic Curves

› Operations performed on points (x, y) where:

x < 𝑝 and y < 𝑝 with 𝑝 a prime

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑝 must hold

› Need to convert password pw to 

point P (x,y) on the curve
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Hash2Curve

› Hash2Curve is a hash function H such that:

H is a RO mapping from arbitrary strings into the full group domain:
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Hash2Curve

› Hash2Curve is a hash function H such that:

H is a RO mapping from arbitrary strings into the full group domain:

› For WPA3 it was decided that point P is 

13



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)
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Half of x values aren’t on the curve
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Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

15

#iterations depends on password
(and public MAC addresses)

No timing leak countermeasures,

despite warnings by IETF & CFRG!
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Attacking Access Points
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Leaked information: #iterations needed
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What information is leaked?

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)
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What information is leaked?

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

21

Spoof client address to obtain 

different execution & leak new data
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Leaked information: #iterations needed

25

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3

Forms a signature of the password

Need ~17 addresses to determine 

password in RockYou (~𝟏𝟎𝟕) dump
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Raspberry Pi 1 B+: differences are measurable
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EAP-pwd client:

~30 measurements / address

Using Crosby’s box test



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P
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Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

28

WPA3: always do 40 

loops & return first P



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

29

Blinded constant time

square root test



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

30

Extra iterations based 

on random password



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

31

Are we Safe?



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

32

Truncate to size of prime p



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

33

Brainpool: 𝑝 = 0xA9FB57DBA1EEA9BC…

 High chance that x >= p



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

34

= rejection sampling



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

35

Code may be skipped



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P
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#Times skipped depends on password



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

37

#Times skipped depends on password 

& random password in extra itreations



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

38

Variance ~ when password element was found



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

39

Variance ~ when password element was found

Average ~ when found & #iterations code skipped
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Raspberry Pi 1 B+
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WPA3 AP (Hostap):

~300 measurements / address

Using Crosby’s box test
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Cache 

Attacks



Threat Model
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Threat Model
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Threat Model
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Cache attack on NIST curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

43

NIST: 𝑝 = 0x0xFFFFFFFF00000001000…

 Negligible chance that x >= p



Cache attack on NIST curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

44

NIST curves: use Flush+Reload to 

detect when code is executed



Cache attack on NIST curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

44

Monitor using Flush+Reload to 

know in which iteration we are

NIST curves: use Flush+Reload to 

detect when code is executed



Attacking client: Intel Core i7-7500
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Attacking client: Intel Core i7-7500
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WPA3 client (Hostap):

~20 measurements / address

Using Linear Classifier



Detailed Analysis: See Paper

› Estimate required #(spoofed MAC addresses):
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Detailed Analysis: See Paper

› Estimate required #(spoofed MAC addresses):

47

› Offline brute-force cost:



Password Brute-force Cost
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Implementation 

Inspection
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Invalid Curve Attack
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Invalid Curve Attack

50

Commit(x’, y’)

Commit reply

Point isn’t on curve

Negotiated key 

is predictable

Guess key and 

send confirm

Confirm phase

Bypasses authentication

 EAP-pwd: all implementations affected

 WPA3: only iwd is vulnerable



Reflection Attack: EAP-pwd example
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Reflection Attack: EAP-pwd example

51

Commit(x, y)

Commit(x, y)

Reflect frame

Confirm

Confirm

Reflect frame

association

Authenticate as victim

 EAP-pwd: all servers are vulnerable

 WPA3: old wpa_supplicants affected



Other Implementation Vulnerabilities
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Bad randomness: 

› Can recover password element P

› Aruba’s EAP-pwd client for Windows is affected

› With WPA2 bad randomness has lower impact!



Other Implementation Vulnerabilities
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Bad randomness: 

› Can recover password element P

› Aruba’s EAP-pwd client for Windows is affected

› With WPA2 bad randomness has lower impact!

Side-channels: 

› FreeRADIUS aborts if >10 iterations are needed

› Aruba’s EAP-pwd aborts if >30 are needed

› Can use leaked info to recover password



Wi-Fi Specific 

Attacks

54



Denial-of-Service Attack

55

Convert password to 

group element P

Convert password to 

group element P

AP converts password to EC 

point when client connects

› Conversion is computationally expensive (40 iterations)

› Forging 8 connections/sec saturates AP’s CPU



Downgrade Attacks

Transition mode: WPA2/3 use the same password

› WPA2’s handshake detects downgrades
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Downgrade Attacks

Transition mode: WPA2/3 use the same password

› WPA2’s handshake detects downgrades

› Performing partial WPA2 handshake  dictionary attacks

Handshake can be performed with multiple curves

› Initiator proposes curve & responder accepts/rejects

› Spoof reject messages to downgrade used curve

56



Implementation-specific downgrades

› Clone WPA3-only network & advertise it only supports WPA2
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Implementation-specific downgrades

› Clone WPA3-only network & advertise it only supports WPA2

› Galaxy S10 & iwd connected using the WPA3-only password

› Results in trivial dictionary attack
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Disclosure



Disclosure process

Notified parties early with hope to influence WPA3

Reaction of the Wi-Fi Alliance

› Privately created backwards-compatible security guidelines

› 2nd disclosure round to address Brainpool side-channels

› Nov 2019: Updated guidelines now prohibit Brainpool curves
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Latest Wi-Fi Alliance guidelines (Nov 2019)

› “implementations must avoid [..] side-channels”
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› “implementations must avoid [..] side-channels”

› If WPA3-Transition “doesn’t meet security requirements”, 

then seperate passwords
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Latest Wi-Fi Alliance guidelines (Nov 2019)

› “implementations must avoid [..] side-channels”

› If WPA3-Transition “doesn’t meet security requirements”, 

then seperate passwords

› “Failure to implement...”  how can it be checked?
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Fundamental issue still unsolved

› Hard to implement in constant time

› On lightweight devices, doing 40 iterations is too costly
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Fundamental issue still unsolved

› Hard to implement in constant time

› On lightweight devices, doing 40 iterations is too costly
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Draft IEEE 802.11 standard has been updated

› Exclude MAC addresses from hash2curve

Allows offline computation of password element

› Now uses constant-time hash2curve

› Explicitly prohibit use of weak EC & MODP groups

› Prevent crypto group downgrade attack



Remaining issues

Message transcript is not included in key derivation

› Prevents formal proof of protocol

› High risk of implementation issues

› E.g. prevention of crypto group downgrade attack
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Remaining issues

Message transcript is not included in key derivation

› Prevents formal proof of protocol

› High risk of implementation issues

› E.g. prevention of crypto group downgrade attack

Downgrade to WPA2

› Not addressed in the standard

› Up to vendor whether to implement trust-on-first-use

› Done by Android & NetworkManager of Linux
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Issue 2: not backwards-compatible

Might lead to WPA3.1?

› Not yet clear how Wi-Fi Alliance will handle this

› Risk of downgrade attacks to original WPA3
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› Not yet clear how Wi-Fi Alliance will handle this

› Risk of downgrade attacks to original WPA3
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Should you switch to WPA3?

› WPA2 is trivial to attack... so yes.



Conclusion
› WPA3 vulnerable to side-channels

› Countermeasures are costly

› Draft 802.11 standard updated

› Issues could have been avoided!

https://wpa3.mathyvanhoef.com
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Thank you! Questions?
› WPA3 vulnerable to side-channels

› Countermeasures are costly

› Draft 802.11 standard updated

› Issues could have been avoided!

https://wpa3.mathyvanhoef.com
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