
Mathy Vanhoef and Eyal Ronen

Dragonblood: Analyzing the 

Dragonfly Handshake of 

WPA3 and EAP-pwd



Background: Wi-Fi Security

› 1999: Wired Equivalent Privacy (WEP)

RC4 with 40 (!) or 104 bits key 

Broken in 2001 [FMS01]

Deprecated 2004

2



Background: Wi-Fi Security

› 1999: Wired Equivalent Privacy (WEP)

RC4 with 40 (!) or 104 bits key 

Broken in 2001 [FMS01]

Deprecated 2004

› 2003: Wi-Fi Protected Access (WPA)

2



Background: Wi-Fi Security

› 1999: Wired Equivalent Privacy (WEP)

RC4 with 40 (!) or 104 bits key 

Broken in 2001 [FMS01]

Deprecated 2004

› 2003: Wi-Fi Protected Access (WPA)

› 2004: Wi-Fi Protected Access 2 (WPA2)

Allows offline password brute-force

KRACK and Kraken attack [VP][2017-8]

2



Background: Dragonfly in WPA3 and EAP-pwd

3

= Password Authenticated Key Exchange (PAKE)



Background: Dragonfly in WPA3 and EAP-pwd

3

Provide mutual 

authentication

= Password Authenticated Key Exchange (PAKE)



Background: Dragonfly in WPA3 and EAP-pwd

3

Negotiate 

session key
Provide mutual 

authentication

= Password Authenticated Key Exchange (PAKE)



Background: Dragonfly in WPA3 and EAP-pwd

3

Negotiate 

session key
Provide mutual 

authentication

Prevent offline 

dictionary attacks

= Password Authenticated Key Exchange (PAKE)



Our Results [VR 20]

› Comprehensive analysis of WPA3

First attacks against the new protocol 

Break most of the security guarantees 

Provide PoC for attacks

› Recommendations for fixing the crypto design 

Resulting in draft for new protocol version

4



The Dragonfly Protocol



Dragonfly

6

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 +𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 +𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃



Dragonfly

6

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 +𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 +𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Convert password to 

group element P



Dragonfly

7

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 +𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 +𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Commit(𝑠𝐵 , 𝐸𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)



Dragonfly

7

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 +𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 +𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Commit(𝑠𝐵 , 𝐸𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)

Negotiate shared key



Dragonfly

8

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)



Dragonfly

9

Confirm(𝑐𝐴)

Confirm(𝑐𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)

Confirm peer negotiated same key 



Dragonfly

10

Confirm(𝑐𝐴)

Confirm(𝑐𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)How to derive P from a password?

1. MODP groups

2. Elliptic curves



Dragonfly

11

Confirm(𝑐𝐴)

Confirm(𝑐𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)How to derive P from a password?

1. MODP groups

2. Elliptic curves



Elliptic Curves

› Operations performed on points (x, y) where:

x < 𝑝 and y < 𝑝 with 𝑝 a prime

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑝 must hold

› Need to convert password pw to 

point P (x,y) on the curve

12



Hash2Curve

› Hash2Curve is a hash function H such that:

H is a RO mapping from arbitrary strings into the full group domain:

13



Hash2Curve

› Hash2Curve is a hash function H such that:

H is a RO mapping from arbitrary strings into the full group domain:

› For WPA3 it was decided that point P is 

13



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

14



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

14

Half of x values aren’t on the curve



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

15



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

15

#iterations depends on password
(and public MAC addresses)



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

15

#iterations depends on password
(and public MAC addresses)

No timing leak countermeasures,

despite warnings by IETF & CFRG!



Attacking Clients

16



Attacking Clients

16



Attacking Access Points

17



Leaked information: #iterations needed

18

Client address addrA

Measured



Leaked information: #iterations needed

19

Client address addrA

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed

20

Client address addrA

Measured

Password 1

Password 2

Password 3



What information is leaked?

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

21



What information is leaked?

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

21

Spoof client address to obtain 

different execution & leak new data



Leaked information: #iterations needed

22

Client address addrA addrB

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed

22

Client address addrA addrB

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed

23

Client address addrA addrB

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed

24

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed

25

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed

25

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3

Need ~17 addresses to determine 

password in RockYou (~𝟏𝟎𝟕) dump



Leaked information: #iterations needed

25

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3

Forms a signature of the password

Need ~17 addresses to determine 

password in RockYou (~𝟏𝟎𝟕) dump



Raspberry Pi 1 B+: differences are measurable

26



Raspberry Pi 1 B+: differences are measurable

26

EAP-pwd client:

~30 measurements / address

Using Crosby’s box test



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

28



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

28

WPA3: always do 40 

loops & return first P



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

29

Blinded constant time

square root test



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

30

Extra iterations based 

on random password



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

31

Are we Safe?



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

32

Truncate to size of prime p



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

33

Brainpool: 𝑝 = 0xA9FB57DBA1EEA9BC…

 High chance that x >= p



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

34

= rejection sampling



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

35

Code may be skipped



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

36

#Times skipped depends on password



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

37

#Times skipped depends on password 

& random password in extra itreations



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

38

Variance ~ when password element was found



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

39

Variance ~ when password element was found

Average ~ when found & #iterations code skipped



Raspberry Pi 1 B+

40



Raspberry Pi 1 B+

40

WPA3 AP (Hostap):

~300 measurements / address

Using Crosby’s box test



41

Cache 

Attacks



Threat Model

42



Threat Model

42



Threat Model

42



Cache attack on NIST curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

43

NIST: 𝑝 = 0x0xFFFFFFFF00000001000…

 Negligible chance that x >= p



Cache attack on NIST curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

44

NIST curves: use Flush+Reload to 

detect when code is executed



Cache attack on NIST curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

44

Monitor using Flush+Reload to 

know in which iteration we are

NIST curves: use Flush+Reload to 

detect when code is executed



Attacking client: Intel Core i7-7500

45



Attacking client: Intel Core i7-7500

46

WPA3 client (Hostap):

~20 measurements / address

Using Linear Classifier



Detailed Analysis: See Paper

› Estimate required #(spoofed MAC addresses):

47



Detailed Analysis: See Paper

› Estimate required #(spoofed MAC addresses):

47

› Offline brute-force cost:



Password Brute-force Cost

48



Implementation 

Inspection

49



Invalid Curve Attack

50

Commit(x’, y’)



Invalid Curve Attack

50

Commit(x’, y’)

Point isn’t on curve



Invalid Curve Attack

50

Commit(x’, y’)

Point isn’t on curve

Negotiated key 

is predictable



Invalid Curve Attack

50

Commit(x’, y’)

Commit reply

Point isn’t on curve

Negotiated key 

is predictable

Guess key and 

send confirm



Invalid Curve Attack

50

Commit(x’, y’)

Commit reply

Point isn’t on curve

Negotiated key 

is predictable

Guess key and 

send confirm

Confirm phase



Invalid Curve Attack

50

Commit(x’, y’)

Commit reply

Point isn’t on curve

Negotiated key 

is predictable

Guess key and 

send confirm

Confirm phase

Bypasses authentication

 EAP-pwd: all implementations affected

 WPA3: only iwd is vulnerable



Reflection Attack: EAP-pwd example

51

association



Reflection Attack: EAP-pwd example

51

Commit(x, y)

association



Reflection Attack: EAP-pwd example

51

Commit(x, y)

Commit(x, y)

Reflect frame

association



Reflection Attack: EAP-pwd example

51

Commit(x, y)

Commit(x, y)

Reflect frame

Confirm

association



Reflection Attack: EAP-pwd example

51

Commit(x, y)

Commit(x, y)

Reflect frame

Confirm

Confirm

Reflect frame

association



Reflection Attack: EAP-pwd example

51

Commit(x, y)

Commit(x, y)

Reflect frame

Confirm

Confirm

Reflect frame

association

Authenticate as victim

 EAP-pwd: all servers are vulnerable

 WPA3: old wpa_supplicants affected



Other Implementation Vulnerabilities

52

Bad randomness: 

› Can recover password element P

› Aruba’s EAP-pwd client for Windows is affected

› With WPA2 bad randomness has lower impact!



Other Implementation Vulnerabilities

52

Bad randomness: 

› Can recover password element P

› Aruba’s EAP-pwd client for Windows is affected

› With WPA2 bad randomness has lower impact!

Side-channels: 

› FreeRADIUS aborts if >10 iterations are needed

› Aruba’s EAP-pwd aborts if >30 are needed

› Can use leaked info to recover password



Wi-Fi Specific 

Attacks

54



Denial-of-Service Attack

55

Convert password to 

group element P

Convert password to 

group element P

AP converts password to EC 

point when client connects

› Conversion is computationally expensive (40 iterations)

› Forging 8 connections/sec saturates AP’s CPU



Downgrade Attacks

Transition mode: WPA2/3 use the same password

› WPA2’s handshake detects downgrades

56



Downgrade Attacks

Transition mode: WPA2/3 use the same password

› WPA2’s handshake detects downgrades

› Performing partial WPA2 handshake  dictionary attacks

56



Downgrade Attacks

Transition mode: WPA2/3 use the same password

› WPA2’s handshake detects downgrades

› Performing partial WPA2 handshake  dictionary attacks

Handshake can be performed with multiple curves

› Initiator proposes curve & responder accepts/rejects

› Spoof reject messages to downgrade used curve

56



Implementation-specific downgrades

› Clone WPA3-only network & advertise it only supports WPA2

57

iwd



Implementation-specific downgrades

› Clone WPA3-only network & advertise it only supports WPA2

› Galaxy S10 & iwd connected using the WPA3-only password

› Results in trivial dictionary attack

57

iwd



58

Disclosure



Disclosure process

Notified parties early with hope to influence WPA3

Reaction of the Wi-Fi Alliance

› Privately created backwards-compatible security guidelines

› 2nd disclosure round to address Brainpool side-channels

› Nov 2019: Updated guidelines now prohibit Brainpool curves

59



Latest Wi-Fi Alliance guidelines (Nov 2019)

› “implementations must avoid [..] side-channels”

60



Latest Wi-Fi Alliance guidelines (Nov 2019)

› “implementations must avoid [..] side-channels”

› If WPA3-Transition “doesn’t meet security requirements”, 

then seperate passwords

60



Latest Wi-Fi Alliance guidelines (Nov 2019)

› “implementations must avoid [..] side-channels”

› If WPA3-Transition “doesn’t meet security requirements”, 

then seperate passwords

› “Failure to implement...”  how can it be checked?

60



Fundamental issue still unsolved

› Hard to implement in constant time

› On lightweight devices, doing 40 iterations is too costly

61



Fundamental issue still unsolved

› Hard to implement in constant time

› On lightweight devices, doing 40 iterations is too costly

61

Draft IEEE 802.11 standard has been updated

› Exclude MAC addresses from hash2curve

Allows offline computation of password element

› Now uses constant-time hash2curve

› Explicitly prohibit use of weak EC & MODP groups

› Prevent crypto group downgrade attack



Remaining issues

Message transcript is not included in key derivation

› Prevents formal proof of protocol

› High risk of implementation issues

› E.g. prevention of crypto group downgrade attack

62



Remaining issues

Message transcript is not included in key derivation

› Prevents formal proof of protocol

› High risk of implementation issues

› E.g. prevention of crypto group downgrade attack

Downgrade to WPA2

› Not addressed in the standard

› Up to vendor whether to implement trust-on-first-use

› Done by Android & NetworkManager of Linux

62



Issue 2: not backwards-compatible

Might lead to WPA3.1?

› Not yet clear how Wi-Fi Alliance will handle this

› Risk of downgrade attacks to original WPA3

63



Issue 2: not backwards-compatible

Might lead to WPA3.1?

› Not yet clear how Wi-Fi Alliance will handle this

› Risk of downgrade attacks to original WPA3

63

Should you switch to WPA3?

› WPA2 is trivial to attack... so yes.



Conclusion
› WPA3 vulnerable to side-channels

› Countermeasures are costly

› Draft 802.11 standard updated

› Issues could have been avoided!

https://wpa3.mathyvanhoef.com

64

https://wpa3.mathyvanhoef.com/


Thank you! Questions?
› WPA3 vulnerable to side-channels

› Countermeasures are costly

› Draft 802.11 standard updated

› Issues could have been avoided!

https://wpa3.mathyvanhoef.com

65

https://wpa3.mathyvanhoef.com/

