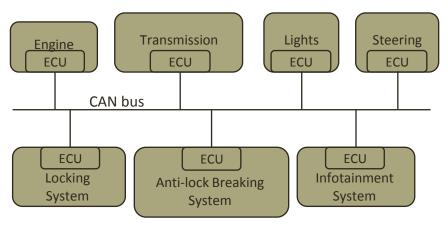
TCAN: Authentication Without Cryptography on a CAN Bus Based on Nodes Location on the Bus

Eli Biham, Sara Bitan, Eli Gavril Computer Science Dept., Technion

Introduction

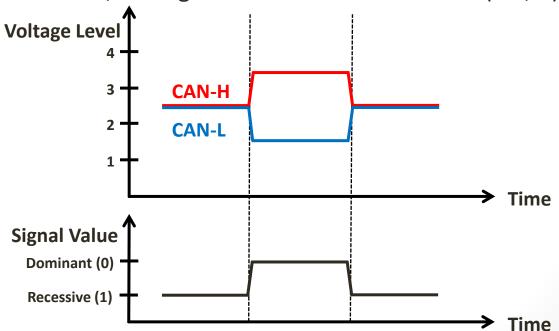
- Cars have become extremely sophisticated in recent years.
- They contain dozens of computerized systems:
 - Anti-lock braking system (ABS)
 - Tire pressure monitoring system (TPMS)
 - Cruise control
 - Backup assist
 - Infotainment
 - And many more...



- Some of these systems are also connected to the internet.
- All of these system communicate with each other through networks
 - the main one is the CAN bus.

The CAN Bus

• In-vehicle systems are connected to the CAN bus via Electronic Control Units (ECUs):


The ECUs communicate with each other by sending CAN messages:

Cancellation of Messages

- A Message can be invalidated during transmission by transmitting an error frame over it.
- The error frame is transmitted by an ECU upon detection of a bus error.
- The error frame starts with 6 to 12 consecutive dominant bits.
 - The CAN protocol uses bit stuffing to ensure that no six consecutive dominant bits occur in a CAN message.
- The last chance to transmit an error frame is over the EOF field.

CAN Data Transmission

- The ECUs on the bus are connected by two wires: CAN-H and CAN-L.
 - When voltage levels of CAN-H and CAN-L are equal, the signal on the bus is recessive (i.e., 1).
 - When voltage difference between CAN-H and CAN-L is above a certain threshold, the signal on the bus is dominant (i.e., 0).

The Problem

- The CAN bus has no built-in security mechanisms.
- Any ECU on the bus can send a malicious message
 - with a forged message type to another ECU.
- For example,
 - the infotainment system can send a steering message.

The Problem

- In 2014 two researchers showed how to remotely hack a Jeep Cherokee.
 - They managed to remotely gain access to the CAN bus, and
 - Send malicious messages.
 - They managed to physically influence the vehicle.
- They discovered how to
 - kill the engine
 - disable the brakes
 - influence the steering
 - etc.

Attack Model

- Our attack model consists of an attacker that manages to compromise ECUs on the CAN bus.
- The compromised ECUs can send:
 - Messages that appear to be sent from other ECUs.
 - Or any signal.
- We do not address the issue of an attacker that has physical access to the vehicle.

CAN Bus Authentication

- In order for the CAN bus to be secure, CAN messages need to be authenticated.
- Authentication requirements:
 - Verifying the true sender of the message
 - Verifying that the message has not been tampered with
- Message integrity is supported by the built-in collision detection in the CAN bus.
- Verification of the sender is typically achieved using cryptography.

Existing Solutions

CAN+ and CANAuth

- CAN+ is a protocol that allows inserting 120 additional bits of data to each message.
- The additional bits are transmitted in a "gray zone"
 - A period of time within a CAN bit in which a signal change may be possible without causing errors.

CAN+ and CANAuth

- CANAuth uses CAN+ to send key establishment data and message signatures.
- For each message type or a group of message types
 - a session key is established
 - and distributed to the relevant ECUs.
 - The session key is used by the ECUs to authenticate messages of the corresponding types.
- The problem:
 - If an ECU is compromised then so are all of its session keys.
 - Thus, it can send any message type that it usually just receives.

CaCAN

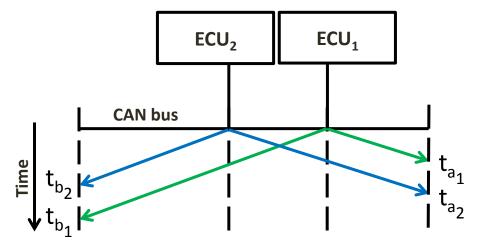
- CaCAN saves the need of each ECU to authenticate received messages.
- Instead, it uses a special "Monitor" node that checks authentication.
 - And cancels invalid messages by sending an error frame.
- A sending ECU attaches an authentication tag to the message.
 - Containing a counter and a MAC.
 - Computed under a secret shared key of the ECU and the Monitor.
- The problem: an 8-bit MAC is not secure enough.
 - Also, the MAC and counter consume 16 bits of the message.

CMI-ECU

- A Monitor detects malicious messages by using dedicated detection algorithms
 - Typically employ pattern matching or heuristic detection filters.
 - When a malicious message is detected, the Monitor invalidates it by transmitting an error frame.
- Drawbacks
 - Detection algorithms cannot detect all the malicious messages.
 - An attacker may be able to deceive the detection algorithms.

Other Protocols

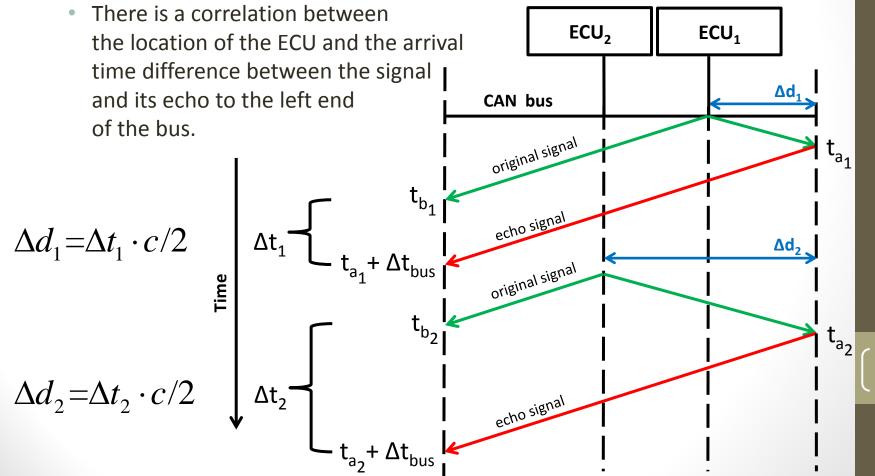
TESLA


Parrot

• etc.

TCAN

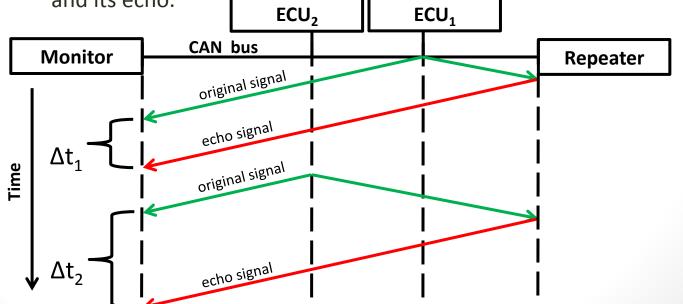
Correlation Between Location and Arrival Time


- Consider a signal sent by an ECU
 - And consider its arrival times to the two ends of the bus.
 - We term them t_a and t_b.
- We observe that the location of an ECU on the bus is correlated to the arrival time difference.

- If we were to know the arrival time difference t_a t_b of a signal,
 - we would be able to deduce the location of the sender.

Correlation Between Location and Arrival Time

 Consider that any signal that reaches the right end of the bus is immediately echoed back.



18

The Repeater and Monitor

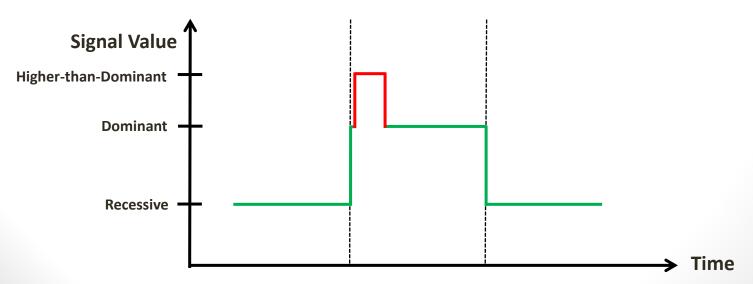
- We install two new nodes at the ends of the bus:
 - A repeater at one end, and a monitor at the other end.
 - The Repeater echoes a signal
 - when it receives messages on the bus.
 - The Monitor deduces the physical location of a sending ECU

 by measuring reception time difference between a message signal and its echo.

Authenticating the Message

- The Monitor contains an Authentication Table
 - a table that contains legal pairs of location and message type.
- The Monitor reads the message type of the message
 - and checks if the message type and the deduced physical location of the sender are a legal pair in the Authentication Table.
- If the pair is legal, the Monitor does nothing.
 - Otherwise, the Monitor invalidates the message by transmitting an error frame.

The Measurement Procedure

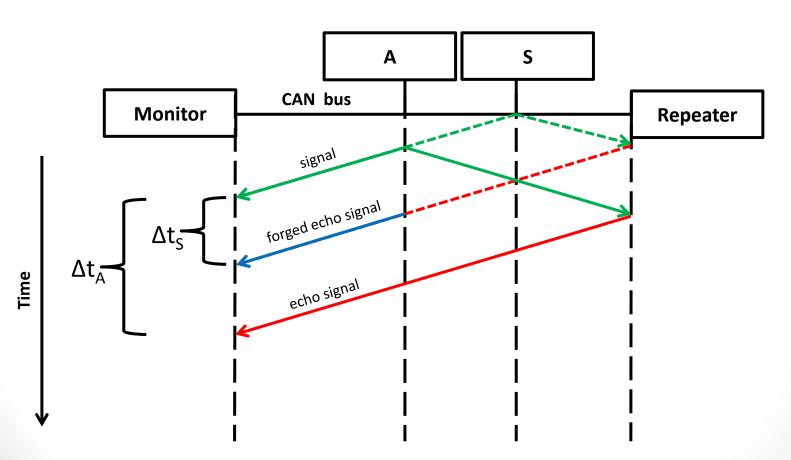

- Let S transmit a signal with a recessive-to-dominant edge.
- When the Repeater receives the signal from S, it immediately transmits an echo signal.
 - The echo signal should be identifiable by the Monitor but transparent to standard ECUs.
 - The echo signal has a predefined constant duration.
- The Monitor receives the signal from S and its echo from the Repeater, and measures their time difference Δt_s .
- The Monitor calculates the distance from S to the Repeater as $\Delta d_s = \Delta t_s \cdot c/2$
- The procedure returns with failure if one of the following occurs:
 - The echo signal is longer than a standard echo signal.
 - More than one echo signal is received.
- Otherwise, Δd_s is returned.

The Complete TCAN Protocol

- Given an authentication table,
- Let S transmit a message.
- Apply the measurement procedure to deduce the location of S
 - Following any recessive-to-dominant edge after the arbitration phase.
- If the procedure fails, the Monitor cancels the message
 - by sending an error frame.
- Otherwise, let the Monitor perform the following operations:
 - Fetch the message type from the message.
 - Verify that the pair (location, message type) exists in the authentication table.
 - If not, cancel the message by sending an error frame.

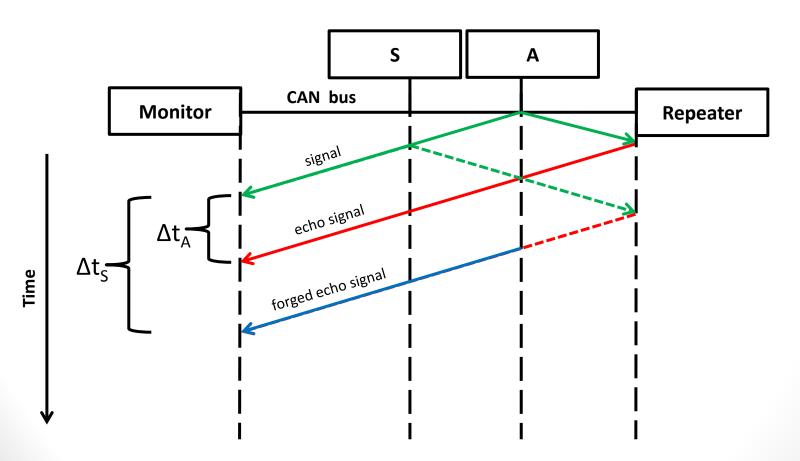
Echo Signal Implementation

- The Repeater waits for a recessive-to-dominant edge and sends an echo signal when such edge occurs.
 - The echo signal has a voltage difference which is higher than a regular dominant signal.
- The Monitor is fitted with high measurement capabilities
 - and is thus able to detect the echo signal.
 - Regular ECUs don't notice the echo signal.

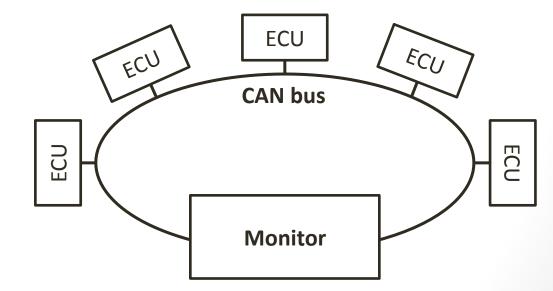


Echo-Forgery Attacks

- An attacker may try to send a forged echo signal in order to deceive the Monitor.
- In such attacks, the attacker wishes to cause the Monitor to deduce a legal origin of the signal,
 - Instead of deducing the location of the attacker,
 - By sending a carefully timed echo signal.


Echo-Forgery Attacks

An attack from the left side of the legal sender:


Echo-Forgery Attacks

An attack from the right side of the legal sender:

Unified Monitor and Repeater

- In this alternative, both ends of the CAN bus are connected into a single device
 - It can monitor signals on both ends of the bus.
 - And can measure the time differences between the two ends.

- Advantages:
 - No echo signal.
 - The Monitor is passive.

Authentication Table Init

- The manufacturer of the car creates a hard-coded table for the Monitor.
 - Or lets the mechanic create/update the table.
 - It is completely cryptography-less.
- Alternatively, manufacturers may choose to automate the creation of the authentication table
 - Having each ECU carry out a cryptographic initialization protocol with the Monitor.
 - Cryptography is used in order to ensure security.
 - The main protocol still remains cryptography-less
 - During the entire ride.

Measurement Accuracy

 The Monitor deduces the location from the arrival time difference using the following equation:

$$\Delta d_s = \Delta t_s \cdot c/2$$

- Let N be the accuracy of measuring the time difference, in nanoseconds.
- The accuracy of Δd_s is therefore:

$$N \cdot c / 2[m] = N \cdot 0.3 / 2[m] = 0.15N[m]$$

Summary

- We presented the TCAN protocol
 - Authenticates messages on the CAN bus
 - Without using cryptography.
- We offered several implementation options.
 - E.g., echo signal.
- We further discuss practical and implementation issues in the paper.
- TCAN is patent pending.

The End