
March 2019 Mark Silberstein, Technion 1

Foreshadow:
speculative attacks on SGX and beyond

Mark Silberstein

Joint work with
Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,

Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx

March 2019 Mark Silberstein, Technion 2

Big picture in one slide
● Where do CPUs loose performance?

– Branches, Memory translation

– Technology scaling does not help

March 2019 Mark Silberstein, Technion 3

Big picture in one slide
● Where do CPUs loose performance?

– Branches, Memory translation

– Technology scaling does not help

● Speculative execution for latency hiding

– CPU speculates the outcome of slow operations

– Continues execution assuming speculation is correct

– Rolls back the modified architectural state otherwise

March 2019 Mark Silberstein, Technion 4

Speculative execution attacks exploit

Speculation past illegal memory accesses

Inability to fully roll back μarch state

Covert/side channels to leak the state

March 2019 Mark Silberstein, Technion 5

Today

● Background
● From Meltdown to Foreshadow
● SGX: Collateral damage
● Foreshadow-NG (L1TF)
● Discussion

March 2019 Mark Silberstein, Technion 6

Speculative execution 101

1

2

4

5

6

Instruction stream

3 Execute Retire
(commit results)

Completed instructions

Slow
instruction

Depend on 3

CPU

March 2019 Mark Silberstein, Technion 7

Execute Retire
(commit results)

Speculative execution 101

1
2

4

5

6

Instruction stream

3

Completed instructions

CPU

March 2019 Mark Silberstein, Technion 8

Execute Retire
(commit results)

Speculative execution 101

12

4

5

6

Instruction stream

3

Completed instructions

CPU

March 2019 Mark Silberstein, Technion 9

Execute Retire
(commit results)

Speculative execution 101

1

2

4

5

6

Instruction stream

3

Completed instructions

CPU
Slow

T
slow

March 2019 Mark Silberstein, Technion 10

Execute Retire

Speculative execution 101

1

2

4

6

Instruction stream

3

Completed instructions

5

CPU
Slow

Executed speculatively

T
slow

March 2019 Mark Silberstein, Technion 11

Execute Retire

Speculative execution 101

1

2

45

6

Instruction stream

3

Completed instructions

CPU

Not committed yet!

T
slow

March 2019 Mark Silberstein, Technion 12

Execute Retire

Speculative execution 101

1

2

45

6

Instruction stream

3

Completed instructions

Only 2 transiently executed instructions
fit in the speculation window

CPU

T
speculative

T
slow

March 2019 Mark Silberstein, Technion 13

Execute Retire

Speculative execution 101

1

2

45

6

Instruction stream

3

Completed instructions

CPUCompleted, speculation
was right

March 2019 Mark Silberstein, Technion 14

Execute Retire

Speculative execution 101

1

2

6

Instruction stream Completed instructions

Commit all pending
instructions

4

5

3

CPU

March 2019 Mark Silberstein, Technion 15

Execute Retire

Speculative execution 101

1

2

45

6

Instruction stream

3

Completed instructions

CPUCompleted, speculation
was wrong

March 2019 Mark Silberstein, Technion 16

Execute Retire

Speculative execution 101

1

2

6

Instruction stream

3

Completed instructions

4

5

6

CPU

Roll back architectural
speculative state

and continue execution

March 2019 Mark Silberstein, Technion 17

Prerequisites to
speculative execution attack

● CPU speculates insecurely
● Speculative state cannot be rolled back: data

leak
● Race condition: roll back vs. leaking logic

– Attack succeeds only if Tspeculative<Tslow access

March 2019 Mark Silberstein, Technion 18

Complete example
(Rogue cache read – aka Meltdown)

movb (kernel secret), %al

leak(%al)4

Instruction stream

3

Access generates
exception

Transient
instructions

March 2019 Mark Silberstein, Technion 19

Execute

Complete example
(Rogue cache read – aka Meltdown)

Instruction stream

movb (secret),%al

leak (%al)

Retire

Slow: illegal access to an inaccessible
address triggers exception that

requires long time to resolve

March 2019 Mark Silberstein, Technion 20

Execute

Complete example
(Rogue cache read – aka Meltdown)

Instruction stream

leak(%al)

(secret) is insecurely speculated:
read from cache or DRAM ignoring

page protection

movb (secret),%al

Retire

March 2019 Mark Silberstein, Technion 21

Execute

Complete example
(Rogue cache read – aka Meltdown)

Instruction stream

leak(%al)

movb (secret),%al

Retire

Need to be fast to finish before
the exception is resolved

March 2019 Mark Silberstein, Technion 22

Execute Retire

Complete example
(Rogue cache read – aka Meltdown)

Instruction stream

Exception

movb (secret),%al

Speculative state is cleaned
except for the one leaked

leak (%al)

March 2019 Mark Silberstein, Technion 23

Recipe: Speculative read attacks

● Provoke insecure speculation

● Win the race

● Notify the attacker

March 2019 Mark Silberstein, Technion 24

Question 1: where does
insecure speculation occur?

● Meltdown: exception due to access to a page
with Supervisor bit

March 2019 Mark Silberstein, Technion 25

Question 1: where does
insecure speculation occur?

● Meltdown: exception due to access to a page
with Supervisor bit

● Spectre V1: mis-speculated branch

March 2019 Mark Silberstein, Technion 26

Question 1: where does
insecure speculation occur?

● Meltdown: exception due to access to a page
with Supervisor bit

● Spectre V1: mis-speculated branch
● Foreshadow/L1TF: exception due to access to

a non-present page, or via an incorrect
mapping

March 2019 Mark Silberstein, Technion 27

Question 1: where does
insecure speculation occur?

● Meltdown: exception due to access to a page
with Supervisor bit

● Spectre V1: mis-speculated branch
● Foreshadow/L1TF: exception due to access to

a non-present page, or via an incorrect
mapping

The data is speculatively fetched from cache/memory
violating protection guarantees (OS/program)

March 2019 Mark Silberstein, Technion 28

Question 2: How to avoid
misspeculation rollback?

● Not all μarch state can be rolled back
● μarch state becomes architecturally visible!

– Caches

– Branch predictors

– Performance counters

– Contention on shared resources

● Simplest: cache covert channel
(Metldown/Spectre)

March 2019 Mark Silberstein, Technion 29

Flush-Reload covert channel

● Flush the cache before the attack
● Sender/receiver: declare

char leak_array[4K*256]

● Sender:

 void leak_byte(char secret) {

 leak_array[4K*secret]=1;

 }

● Receiver: probe the array to identify cached values
– argmin(access_time(leak_array[4K*i]))

March 2019 Mark Silberstein, Technion 30

Question 3: How to win the
leak-to-rollback race condition

● Access to leak_array must be fast (in TLB)

● Access to secrets must be fast (in cache)
● Try many times

– suppress the exception bailout

● Unsuccessful attempts are zero-biased

March 2019 Mark Silberstein, Technion 31

Question 3: How to win the
leak-to-rollback race condition

● Access to leak_array must be fast (in TLB)

● Access to secrets must be fast (in cache)
● Try many times

– suppress the exception bailout

● Unsuccessful attempts are zero-biased

Plus some secret sauce that nobody reallyPlus some secret sauce that nobody really
understands why it worksunderstands why it works

March 2019 Mark Silberstein, Technion 32

Agenda

● Background on SGX
● Foreshadow
● Collateral damage on SGX
● Foreshadow-NG /L1TF
● Discussion

March 2019 Mark Silberstein, Technion 33

Background: SGX
● Enclave: reversed sandbox
● Private code & data

– Confidentiality

– Integrity

– Freshness

● Defends against privileged
SW!

● HW acceleration
● Scales with CPU scaling

Operating system

Application
Enclave Enclave

March 2019 Mark Silberstein, Technion 34

CPU

Background: SGX memory
DRAM encrypted, cache in plain text

System memory

Enclave

secret_foo():
...
*p = 1; SGX

memory

Enclave Page Cache
(EPC)

Plain text data

CPU

Cache

March 2019 Mark Silberstein, Technion 35

OS

Background:
Address translation in enclaves

secret_foo():
...
*p = 1;

Page table

Hardware
Address translation

System memoryEnclave

EPC

March 2019 Mark Silberstein, Technion 36

OS

Background:
SGX abort page semantics

foo():
...
printf(*p) ;

Page table

Hardware
Address translation

System memoryProcess

EPC

March 2019 Mark Silberstein, Technion 37

OS

Background:
SGX abort page semantics

foo():
...
printf(*p) ;

Page table

Hardware
Address translation

System memoryProcess

EPC

read 0xFF

March 2019 Mark Silberstein, Technion 38

OS

foo():
...
printf(*p) ;

Page table

Hardware
Address translation

System memoryProcess

EPC

Foreshadow uses speculative
execution to leak secrets from

SGX secure memory (EPC)

March 2019 Mark Silberstein, Technion 39

Agenda

● Foreshadow
● Collateral damage on SGX
● Foreshadow-NG /L1TF
● Discussion

March 2019 Mark Silberstein, Technion 40

Reminder: Speculative read attacks

● Provoke insecure speculation

● Win the race

● Notify the attacker

March 2019 Mark Silberstein, Technion 41

Challenges of SGX attacks

● Provoke
– Abort page behavior suppresses exception: no

speculation

● Provoke/Win – Secrets must be in L1 cache

● Notify – Same as Meltdown

SGX is resilient to
strawman Meltdown attack

March 2019 Mark Silberstein, Technion 42

Challenges of SGX attacks

● Provoke
– Abort page behavior suppresses exception: no

speculation

● Provoke/Win – Secrets must be in L1 cache

● Notify – Same as Meltdown

SGX is resilient to
strawman Meltdown attack

March 2019 Mark Silberstein, Technion 43

Understanding memory translation
with SGX

Virtual to physical

In EPC

Enclave Mode?

Is mapping
valid

In SGX
physical

Exception Read EPC Read FF Regular

no

nono

no

March 2019 Mark Silberstein, Technion 44

Understanding memory translation
with SGX

Virtual to physical

In EPC

Enclave Mode?

Is mapping
valid

In SGX
physical

Exception Read EPC Read FF Regular

no

nono

no

Abort page path

March 2019 Mark Silberstein, Technion 45

Understanding memory translation
with SGX

Virtual to physical

In EPC

Enclave Mode?

Is mapping
valid

In SGX
physical

Exception Read EPC Read FF Regular

no

nono

no

Dangerous
speculation

happens here

March 2019 Mark Silberstein, Technion 46

Provoke 1
Overriding abort page semantics

● Idea 1: access to a “not-present” EPC page
– user calls mprotect(epc_mem, PROT_NONE)

March 2019 Mark Silberstein, Technion 47

Provoke 1
Overriding abort page semantics

● Idea 1: access to a “not-present” EPC page
– user calls mprotect(epc_mem, PROT_NONE)

● Access to the epc_mem triggers exception

● Speculative path reads epc_mem from L1
despite SGX protection

March 2019 Mark Silberstein, Technion 48

Provoke 1
Overriding abort page semantics

● Why does it work?
Speculative path ignores SGX memory checks

● Idea 1: access to a “not-present” EPC page
– user calls mprotect(epc_mem, PROT_NONE)

● Access to the epc_mem triggers exception

● Speculative path reads epc_mem from L1
despite SGX protection

March 2019 Mark Silberstein, Technion 49

Provoke 1
Overriding abort page semantics

● Why does it work?
Speculative path ignores SGX memory checks

● Idea 1: access to a “not-present” EPC page
– user calls mprotect(epc_mem, PROT_NONE)

● Access to the epc_mem triggers exception

● Speculative path reads epc_mem from L1
despite SGX protection

This attack works
from user space!

March 2019 Mark Silberstein, Technion 50

Provoke 2
Overriding abort page semantics

● Idea 2: access maliciously mapped page
– kernel maps an EPC page into another enclave

March 2019 Mark Silberstein, Technion 51

Provoke 2
Overriding abort page semantics

● Idea 2: access maliciously mapped page
– kernel maps an EPC page into another enclave

● Why does it work?
– Speculative path ignores inter-enclave

protection checks

March 2019 Mark Silberstein, Technion 52

Attack works with secrets in L1!
How to ensure they are in L1?

1.Single-stepping an enclave with SGX-Step

2.Controlled side channel attack

3.Dumping enclave's memory without enclave
execution via enclave swapping

March 2019 Mark Silberstein, Technion 53

Leak secret

● Same as in Meltdown:
– flush-and-reload cache covert channel

● Some tweaking to win the race

March 2019 Mark Silberstein, Technion 54

Summary so far

● SGX is vulnerable to speculative execution
attacks

● Enclave's data in L1 cache can be accessed
via speculative access

● L1 cache can be populated via enclave paging
mechanism without executing the enclave

● Result: dump all enclave memory

March 2019 Mark Silberstein, Technion 55

Collateral damage:
attacking SGX attestation

March 2019 Mark Silberstein, Technion 56

Remote attestation

● Essential for SGX ecosystem
● Enables a party trusting Intel to trust an enclave

executed on a remote machine

March 2019 Mark Silberstein, Technion 57

Remote attestation

● Example: Netflix video player runs on your
computer, receives secrets from Netflix.

● Remote attestation proves to Netflix that
– The player is running on genuine Intel's hardware

– The player's binary is a genuine one

Sponsored add:
An excellent primer on SGX 2.0 attestation: first talk at
http://cyber.technion.ac.il/2018-summer-school-on-cyber-computer-security

March 2019 Mark Silberstein, Technion 58

SGX Architectural Enclaves

● Implement remote attestation in software
● Rely on SGX security guarantees

– keep Intel-provisioned Secret in the
Architectural Enclave

● Trusted by Intel

March 2019 Mark Silberstein, Technion 59

Observations

● Knowing Intel Secret allows signing faked enclaves
● Intel Secret is designed for unlinkability

– Intel cannot tell apart enclaves signed with the same key

● Corollary: with the Intel Secret in attacker's hands,
enclave users (Netflix) cannot tell apart genuine
and faked enclaves!

March 2019 Mark Silberstein, Technion 60

How to retrieve Intel Secret?

● The Secret is stored on a disk encrypted with
sealing key

● Sealing key is found in enclave's memory of the
Intel Architectural Enclave

March 2019 Mark Silberstein, Technion 61

How to retrieve Intel Secret?

● The Secret is stored on a disk encrypted with
sealing key

● Sealing key is found in enclave's memory of the
Intel Architectural Enclave

We attack the Quoting Enclave:
A combination of

1. Controlled side channel
2. Foreshadow

March 2019 Mark Silberstein, Technion 62

March 2019 Mark Silberstein, Technion 63

Summary so far

● SGX is vulnerable to speculative execution
attacks

● Allows dumping enclave's memory
● Attack enables leaking sealing key and Secret

from infrastructural enclaves
● Breaks the SGX remote attestation without

an easy way to revoke (anonymous) Secret

March 2019 Mark Silberstein, Technion 64

Foreshadow-NG: L1TF

● Foreshadow reported on Jan 3rd by KU Leuven,
Jan 23rd by Technion/Michigan/Adelaide

● Intel's follow up (Aug 11, but known since March):
there are three other flavors, same bug

● Process-to-process
● Process-to-SMM
● VM guest to host

March 2019 Mark Silberstein, Technion 65

L1 Terminal Fault

● When an accessed page is marked not present (terminal
fault), PA is used to access L1 cache, while ignoring..
– SGX: EPC access checks

– OS: Protection checks

– VirtualMachine: GuestP-to-HostP translation

● Implication: guest controls which Host Physical
addresses to access

● Major issue: forced months of disclosure embargo

March 2019 Mark Silberstein, Technion 66

Foreshadow vs. Meltdown

● Spectre/Meltdown – same address space leaks
● Foreshadow – both intra and inter-address

space leaks. Memory isolation non-existent

March 2019 Mark Silberstein, Technion 67

Mitigation: Foreshadow

● SGX microcode updates
– flush L1 on each enclave exit/eldu

=> prevents non-concurrent attacks on L1

– hyperthreading is part of the enclave trusted state

=> prevents concurrent attacks on L1

– increase security version (TCB update)

March 2019 Mark Silberstein, Technion 68

Open questions

● Foreshadow: bug or design (methodology) flaw?
● Does SGX inherit the bug from X86?
● What do we actually know about the reasons?

– Hint: not much

● SGX remote attestation relies on SGX – poor
design choice?

● Disclosure process: who is in charge for the
world piece?

March 2019 Mark Silberstein, Technion 69

Summary: Foreshadow

● PWN SGX enclaves
● Breaks SGX confidentiality
● Steals seal-key – breaks the integrity of

persistent storage
● Breaks the remote attestation guarantees which

relies on the enclave
● Same bug causes VM, OS and SMM protection

violation

March 2019 Mark Silberstein, Technion 70

Questions?

mark@ee.technion.ac.il

