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Big picture in one slide
● Where do CPUs loose performance?

– Branches, Memory translation

– Technology scaling does not help
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Big picture in one slide
● Where do CPUs loose performance?

– Branches, Memory translation

– Technology scaling does not help

● Speculative execution for latency hiding

– CPU speculates the outcome of slow operations

– Continues execution assuming speculation is correct

– Rolls back the modified architectural state otherwise
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Speculative execution attacks exploit

Speculation past illegal memory accesses 

Inability to fully roll back μarch state

Covert/side channels to leak the state
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Today

● Background
● From Meltdown to Foreshadow
● SGX: Collateral damage
● Foreshadow-NG (L1TF)
● Discussion
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Execute Retire
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Execute Retire

Speculative execution 101
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Execute Retire

Speculative execution 101
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Execute Retire

Speculative execution 101
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Prerequisites to
speculative execution attack

● CPU speculates insecurely
● Speculative state cannot be rolled back:  data 

leak
● Race condition: roll back vs. leaking logic

– Attack succeeds only if Tspeculative<Tslow access  
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Complete example 
(Rogue cache read – aka Meltdown)

movb (kernel secret), %al

leak(%al)4

Instruction stream

3

Access generates
exception

Transient
instructions
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Execute

Complete example 
(Rogue cache read – aka Meltdown)

Instruction stream

movb (secret),%al

leak (%al)

Retire

Slow: illegal access to an inaccessible
address triggers exception that 

requires long time to resolve
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Execute

Complete example 
(Rogue cache read – aka Meltdown)

Instruction stream

leak(%al)

(secret) is insecurely speculated: 
read from cache or DRAM ignoring

page protection

movb (secret),%al

Retire
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Execute

Complete example 
(Rogue cache read – aka Meltdown)

Instruction stream

leak(%al)

movb (secret),%al

Retire

Need to be fast to finish before
the exception is resolved
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Execute Retire

Complete example 
(Rogue cache read – aka Meltdown)

Instruction stream

Exception

movb (secret),%al

Speculative state is cleaned
except for the one leaked 

leak (%al)
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Recipe: Speculative read attacks

● Provoke insecure speculation

● Win the race

● Notify the attacker 
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Question 1: where does 
insecure speculation occur?

● Meltdown: exception due to access to a page 
with Supervisor bit



March 2019 Mark Silberstein, Technion 25

Question 1: where does 
insecure speculation occur?

● Meltdown: exception due to access to a page 
with Supervisor bit

● Spectre V1: mis-speculated branch  
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Question 1: where does 
insecure speculation occur?

● Meltdown: exception due to access to a page 
with Supervisor bit

● Spectre V1: mis-speculated branch  
● Foreshadow/L1TF: exception due to access to 

a non-present page, or via an incorrect 
mapping
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Question 1: where does 
insecure speculation occur?

● Meltdown: exception due to access to a page 
with Supervisor bit

● Spectre V1: mis-speculated branch  
● Foreshadow/L1TF: exception due to access to 

a non-present page, or via an incorrect 
mapping

The data is speculatively fetched from cache/memory
violating protection guarantees (OS/program)
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Question 2: How to avoid 
misspeculation rollback?

● Not all μarch state can be rolled back
● μarch state becomes architecturally visible!

– Caches

– Branch predictors

– Performance counters

– Contention on shared resources

● Simplest: cache covert channel 
(Metldown/Spectre)
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Flush-Reload covert channel

● Flush the cache before the attack
● Sender/receiver: declare 

char leak_array[4K*256]

● Sender: 

  void leak_byte(char secret) {

       leak_array[4K*secret]=1;

   }

● Receiver: probe the array to identify cached values
– argmin(access_time(leak_array[4K*i]))



March 2019 Mark Silberstein, Technion 30

Question 3: How to win the 
leak-to-rollback race condition

● Access to leak_array must be fast (in TLB)

● Access to secrets must be fast (in cache)
● Try many times

– suppress the exception bailout

● Unsuccessful attempts are zero-biased
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Question 3: How to win the 
leak-to-rollback race condition

● Access to leak_array must be fast (in TLB)

● Access to secrets must be fast (in cache)
● Try many times

– suppress the exception bailout

● Unsuccessful attempts are zero-biased

Plus some secret sauce that nobody reallyPlus some secret sauce that nobody really
understands why it worksunderstands why it works
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Agenda

● Background on SGX
● Foreshadow
● Collateral damage on SGX
● Foreshadow-NG /L1TF
● Discussion
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Background: SGX
● Enclave: reversed sandbox
● Private code & data

– Confidentiality

– Integrity

– Freshness

● Defends against privileged 
SW!

● HW acceleration
● Scales with CPU scaling

Operating system

Application
Enclave Enclave
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CPU

Background: SGX memory
DRAM encrypted, cache in plain text

System memory

Enclave

secret_foo():
...
*p = 1; SGX 

memory

Enclave Page Cache
(EPC) 

Plain text data

CPU

Cache
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OS

Background: 
Address translation in enclaves

secret_foo():
...
*p = 1;

Page table

Hardware
Address translation

System memoryEnclave

EPC 
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OS

Background: 
SGX abort page semantics

foo():
...
printf(*p) ;

Page table

Hardware
Address translation

System memoryProcess

EPC 
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OS

Background: 
SGX abort page semantics

foo():
...
printf(*p) ;

Page table

Hardware
Address translation

System memoryProcess

EPC 

read 0xFF
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OS

foo():
...
printf(*p) ;

Page table

Hardware
Address translation

System memoryProcess

EPC 

Foreshadow uses speculative 
execution to leak secrets from 

SGX secure memory (EPC)
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Agenda

● Foreshadow
● Collateral damage on SGX
● Foreshadow-NG /L1TF
● Discussion
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Reminder: Speculative read attacks

● Provoke insecure speculation

● Win the race

● Notify the attacker 
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Challenges of SGX attacks

● Provoke 
– Abort page behavior suppresses  exception: no 

speculation 

● Provoke/Win – Secrets must be in L1 cache

● Notify – Same as Meltdown

SGX is resilient to 
strawman Meltdown attack
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Challenges of SGX attacks

● Provoke 
– Abort page behavior suppresses  exception: no 

speculation 

● Provoke/Win – Secrets must be in L1 cache

● Notify – Same as Meltdown

SGX is resilient to 
strawman Meltdown attack
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Understanding memory translation
with SGX

Virtual to physical

In EPC

Enclave Mode?

Is mapping
valid

In SGX
physical

Exception Read EPC Read FF Regular

no

nono

no
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Understanding memory translation
with SGX

Virtual to physical

In EPC

Enclave Mode?

Is mapping
valid

In SGX
physical

Exception Read EPC Read FF Regular

no

nono

no

Abort page path
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Understanding memory translation
with SGX

Virtual to physical

In EPC

Enclave Mode?

Is mapping
valid

In SGX
physical

Exception Read EPC Read FF Regular

no

nono

no

Dangerous
speculation

happens here
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Provoke 1
Overriding abort page semantics

● Idea 1: access to a “not-present” EPC page
– user calls mprotect(epc_mem, PROT_NONE)
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Provoke 1
Overriding abort page semantics

● Idea 1: access to a “not-present” EPC page
– user calls mprotect(epc_mem, PROT_NONE)

● Access to the epc_mem triggers exception

● Speculative path reads epc_mem from L1 
despite SGX protection
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Provoke 1
Overriding abort page semantics

● Why does it work?
Speculative path ignores SGX memory checks

● Idea 1: access to a “not-present” EPC page
– user calls mprotect(epc_mem, PROT_NONE)

● Access to the epc_mem triggers exception

● Speculative path reads epc_mem from L1 
despite SGX protection
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Provoke 1
Overriding abort page semantics

● Why does it work?
Speculative path ignores SGX memory checks

● Idea 1: access to a “not-present” EPC page
– user calls mprotect(epc_mem, PROT_NONE)

● Access to the epc_mem triggers exception

● Speculative path reads epc_mem from L1 
despite SGX protection

This attack works 
from user space!
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Provoke 2
Overriding abort page semantics

● Idea 2: access maliciously mapped page
– kernel maps an EPC page into another enclave
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Provoke 2
Overriding abort page semantics

● Idea 2: access maliciously mapped page
– kernel maps an EPC page into another enclave

● Why does it work?
– Speculative path ignores inter-enclave 

protection checks
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Attack works with secrets in L1!
How to ensure they are in L1?

1.Single-stepping an enclave with SGX-Step

2.Controlled side channel attack

3.Dumping enclave's memory without enclave 
execution via enclave swapping
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Leak secret

● Same as in Meltdown: 
– flush-and-reload cache covert channel

● Some tweaking to win the race
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Summary so far

● SGX is vulnerable to speculative execution 
attacks

● Enclave's data in L1 cache can be accessed 
via speculative access

● L1 cache can be populated via enclave paging 
mechanism without executing the enclave

● Result: dump all enclave memory 
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Collateral damage: 
attacking SGX attestation
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Remote attestation

● Essential for SGX ecosystem
● Enables a party trusting Intel to trust an enclave 

executed on a remote machine
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Remote attestation

● Example: Netflix video player runs on your 
computer, receives secrets from Netflix.

● Remote attestation proves to Netflix that
– The player is running on genuine Intel's hardware

– The player's binary is a genuine one

Sponsored add:
An excellent primer on SGX 2.0 attestation: first talk at
http://cyber.technion.ac.il/2018-summer-school-on-cyber-computer-security
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SGX Architectural Enclaves

● Implement remote attestation in software
● Rely on SGX security guarantees

– keep Intel-provisioned Secret in the 
Architectural Enclave

● Trusted by Intel
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Observations

● Knowing Intel Secret allows signing faked enclaves
● Intel Secret is designed for unlinkability

– Intel cannot tell apart enclaves signed with the same key

● Corollary: with the Intel Secret in attacker's hands, 
enclave users (Netflix) cannot tell apart genuine 
and faked enclaves!
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How to retrieve Intel Secret?

● The Secret is stored on a disk encrypted with 
sealing key

● Sealing key is found in enclave's memory of the 
Intel Architectural Enclave
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How to retrieve Intel Secret?

● The Secret is stored on a disk encrypted with 
sealing key

● Sealing key is found in enclave's memory of the 
Intel Architectural Enclave

We attack the Quoting Enclave:
A combination of 

1. Controlled side channel
2. Foreshadow
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Summary so far

● SGX is vulnerable to speculative execution 
attacks

● Allows dumping enclave's memory
● Attack enables leaking sealing key and Secret

from infrastructural enclaves
● Breaks the SGX remote attestation without 

an easy way to revoke (anonymous) Secret 
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Foreshadow-NG: L1TF

● Foreshadow reported on Jan 3rd  by KU Leuven, 
Jan 23rd by Technion/Michigan/Adelaide

● Intel's follow up (Aug 11, but known since March): 
there are three other flavors, same bug

● Process-to-process
● Process-to-SMM
● VM guest to host
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L1 Terminal Fault

● When an accessed page is marked not present (terminal 
fault), PA is used to access L1 cache, while ignoring..
– SGX: EPC access checks

– OS: Protection checks

– VirtualMachine: GuestP-to-HostP translation

● Implication: guest controls which Host Physical 
addresses to access

● Major issue: forced months of disclosure embargo
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Foreshadow vs. Meltdown

● Spectre/Meltdown – same address space leaks
● Foreshadow – both intra and inter-address 

space leaks. Memory isolation non-existent
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Mitigation: Foreshadow

● SGX microcode updates
– flush L1 on each enclave exit/eldu 

=> prevents non-concurrent attacks on L1

– hyperthreading is part of the enclave trusted state 

=> prevents concurrent attacks on L1

– increase security version (TCB update)
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Open questions

● Foreshadow: bug or design (methodology) flaw?
● Does SGX inherit the bug from X86?
● What do we actually know about the reasons?

– Hint: not much

● SGX remote attestation relies on SGX – poor 
design choice?

● Disclosure process: who is in charge for the 
world piece?
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Summary: Foreshadow

● PWN SGX enclaves
● Breaks SGX confidentiality
● Steals seal-key – breaks the integrity of 

persistent storage
● Breaks the remote attestation guarantees which 

relies on the enclave
● Same bug causes VM, OS and SMM protection 

violation
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Questions?

mark@ee.technion.ac.il


