The Picnic Post-Quantum Signature
Scheme and its Security Analysis

Itai Dinur
Ben-Gurion University

Credit for some slides: Melissa Chase and Pichic team

Post-Quantum Cryptography

Large-scale quantum computer could efficiently factor

large numbers and compute discrete logs

* Breaks hardness assumptions of all standardized public key
crypto (e.g., RSA, DSA, ECDSA)

Goal of post-quantum crypto: design new schemes that:

* can be run on classical computer

* remain secure even if adversary has a quantum computer

Post-Quantum Crypto Standardization

NIST (National Institute of Standards and Technology)

initiated post-quantum crypto standardization project

* Goal: standardize post-quantum crypto schemes by 2024

 Submission deadline: November 2017 (69 accepted)

Why now? existing quantum computers extremely limited

 Some researchers believe that a fundamental public-key crypto
scheme may be broken by a quantum computer by 2030

 Designing and deploying (secure) cryptography is slow

Post-Quantum Crypto Standardization

* Scope:
* Digital signatures
* Public-key encryption
* Key-establishment

* Main selection criteria

* Security against both classical and quantum attacks
 Performance on various "classical" platforms

Post-Quantum Crypto Design

Factoring and discrete log are not hard problems on a
guantum computer

(Conjectured) hard problems:
 Problems on algebraic structures (lattices, codes, Multi-variate

polynomials...)
 Symmetric-key algorithms (hash functions, block ciphers,
pseudo-random generators)

Signatures from Symmetric-Key Algorithms

In this talk: focus on signature schemes

Can be built using symmetric-key algorithms:
Hash-based signatures based on Lamport’s one-time
signatures (1979)

Practical challenge: efficiency (+compatibility)

A lot of progress in recent years

Picnic

* New signature scheme based on symmetric-key algorithms
* Submitted to NIST’s project

* Built completely differently from hash-based signatures
* New design: a lot of room for optimizations

ECDSA Small Small Fast Fast

Picnic Small Moderate Moderate Moderate +
(100’s bits) (10K’s bits) (ms’s) (ms’s)

Picnic Designers

PICNIC was designed by a group of cryptographers from Aarhus University, AIT Austrian Institute of
Technology GmbH, DFINITY, Graz University of Technology, Georgia Tech, Microsoft Research, Northwestern
University, Princeton University, Technical University of Denmark and the University of Maryland. The team
includes Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz, Vladimir Kolesnikov, Claudio
Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, Xiao Wang, and Greg Zaverucha.

Mu:rosufr

i AIT m Georgia Northwestern
AARHUS UNIVERSITY SESEEMAMISV™™ pRaNITY .Iﬁ-rla'!- Tech 4& . Resea I'Ch University

PRINCETON DTU U NIV F RSITY OF
UNIVERSITY ==

A

In this Talk

* Basic design of Picnic
* Optimizations
e Security Analysis

Digital Signature Scheme

A digital signature scheme defines 3 algorithms:

Key generation algorithm (run by signer) outputs:
* SK (secret signing key)

* PK (public verification key)

Signing algorithm (run by signer):

* |nputs: SK,m

* Qutput: signature s

Verification algorithm (run by verifier):

* Inputs: PK,m,s

* Qutput: signature s on m “valid” or “not valid”

Picnic Signature Scheme: Overview

PK = F(SK) for some function F
F must be hard to invert (not leak SK)

A signature is proof of knowledge of SK (with m as nonce)
Proof (=signature) must not leak SK, so must be a zero
knowledge (ZK) proof

Require:
* Hard to invert function F
e ZK proof system

Picnic Signature Scheme: Overview

* Fisimplemented using a block cipher

* Key generation algorithm:
* Choose random plaintext block p and key x for F and compute

v=F(x,p) (encrypt p using key x) P

* SK=(p,x) |
* PK=(p,y)

x— F

Yy

* sign((p,x),m)
 Qutput s = proof of knowledge of x such that y=F(x,p) (with m
as nonce)

Picnic’s Zero Knowledge Proof

Prove knowledge of x such that y=F(x,p) (with m as nonce)
Represent F as a Boolean circuit C, with output y=y,,y,,...,y,,

Prove knowledge of x=x,,x,,...,x,, such that y=C(x)
 Note: pis fixed (“hardwired to C”)

Signer proves in ZK “I know x such that C(x)=y”

SK (private) F.p (pubic) PK (pubic)
|
-y Co 1
D
2 -

Picnic’s Zero Knowledge Proof

* Building blocks:
 Multi-Party Computation (MPC-in-the-Head [IKOS07])
e Commitment scheme

SK (private) PK (pubic)

MPC (Multi-Party Computation)

. (SpeC|aI) MPC Setting:
Public Boolean circuit C, secret input value X
* tplayers, player i given input share Wi
c W OWD..0w =x
 Goal: compute output shares wi', w2, ..., w}
c WOwWYd..owl = C(x)
* Players communicate
* Privacy requirement:

e ift-1 players combine information, learn

Hash-Based Commitment Scheme

Committing to a value v
e Choose random string k
* OQOutput commitment: z=H(v, k) for crypto hash function H

Opening a commitment
e Reveal vk
 Given z and vk, anyone can verify that z=H(v,k)

Hiding property: commitment z hides v
Security property: Given commitment z to value v,
committer “cannot lie” about v

/K from MPC: MPC-in-the-Head [IKOSO7]

In Picnic, signer proves “I know x such that C(x)=y”

Assume signing\verification is an interactive process:
Prover chooses t=3 random shares s.t. w{ @w; w3 = x

* Imagine t=3 parties each with input w;

e Internally run MPC to compute wi',w2 ,w? s.t.

wl Qw) Dwl =C(x)=y
 For each player, commit to “view”:

* input WL-O, randomness, states, messages sent and received
* Verifier chooses random challenge i € {1,2,3}
* Prover reveals views of 2 players except i

e Verifier checks:
* (Partial) correctness of MPC computation
* Openings of 2 commitments

PJ Coimmit i Vf
T Viewsj # i .

MPC-in-the-Head [IKOSO7]

Zero Knowledge: Verifier learns nothing about x by
privacy of MPC protocol (sees only 2 out of 3 views)

Correctness: If prover knows x, can run MPC protocol
correctly and pass verification

Commit . \l

i
Views j # (

MPC-in-the-Head [IKOSO7]

Soundness (proof convincing?):

If prover doesn’t know x and tries to cheat, either:
A player misbehaved
* 2 views are inconsistent

Catch cheater with probability p=1/3

Repeat R times to amplify p

 R=219times for p = 1-(2/3)?*° = 1-2-1?% (128-bit security)
Why simulate 3 players?

* 2 players give soundness 0 (cannot check consistency)
* 4 players: better soundness 2/4 per run

but much more communication f"\
* In general: all pairs communicate. e 2
Communication increases quadratically
 More communication = larger proof = Commit V

larger signature, signing time « i

Views j # [

Removing Interaction

Problem: signing\verification is not interactive
How to generate R “random” challenges i,- € {1,2,3}?
Solution: in sign((p,x),m) use Fiat-Shamir transform

Generate challenges as H(commitments,m)
 Challenges pseudorandom and cannot be predicted

Signature s includes for each run r=1,2,...,R:
* 3 commitments, views of 2 players except i,

Commit . \/

i
Views j # (

In this Talk

e Basic design of Picnic
* Optimizations
e Security Analysis

Picnic’s MPC Protocol (ZKBoo [GMO16])

For each wire with Boolean value a in C: each player 1,2,3
holds wire with (resp.) Boolean value a,,a,,a,

Invariant: for each wire with value a, a,@a,@Da,=a
Assume 2 players, XOR gate a@b=c
Know that a,@Pa,=a, b,Hb,=b

Need to define c,,c, such that c,c,=c
* Players don’t learn information

Picnic’s MPC Protocol (ZKBoo [GMO16])

For each wire with Boolean value a in C: each player 1,2,3
holds wire with (resp.) Boolean value a,,a,,a,

Invariant: for each wire with value a, a,@a,@Da,=a
Assume 2 players, XOR gate a@b=c
Know that a,@Pa,=a, b,Hb,=b

Need to define c,,c, such that c,c,=c
* Players don’t learn information

Define: c,=a,@®b,, c,=a,Db,

Cl@C2= (al@b1)@(az@bz)=
(al@az)@(bl@b2)=a@b=c

XOR computation is local: No need to include

XOR outputs c,, ¢, in signature
e Verifier computes outputs of XOR gates
from known inputs

Picnic’s MPC Protocol (ZKBoo [GMO16])

Maintaining invariant for AND gates is more complicated
Requires parties to communicate, generate random bits
“MPC-in-the-head” optimizations:
* Player P.only depends on player P,

* Instead of sending messages: define current state of P,

as function of previous state, current state of P,
* Given (open) states of P, P.,,, consistency can be checked by

verifier — no “messages” in signature (proof)

Picnic’s MPC Protocol (ZKBoo [GMO16])

e AND gate implementation c=a‘b 2 7BND- .
* Parties generate random bits r ,r,,r;

|
¢,=a;"b,Da,b,Da,-b,Dr,Or, 511 E ?—C
c,=a,"b,Das-b,Da,-b,Dr,Dr, by s
C;=ay-b,@Da-b;Das-b,Dr.Pr, r, 5
gz S PTG
* Assume views of P,,P, opened e
* Verifier checks consistency: 5-’;) = 5 c,
c,=a,b,Pa,-b,Pa,-b,Br,Br, b; T
o
N
® . [4
D D
Pl PZ

Picnic’s MPC Protocol (ZKBoo, ZKB++)

XOR gates do not blow up signature, cheap to compute

AND gates blow up signature size (randomness, additional

state), more expensive to compute

Optimizations:

e Circuit C: Use (secure) block cipher with small number of AND
gates — LowMC [ARS+15]

« Randomness generation: each player generates (pseudo)
random bits deterministically using PRG from short random seed
 View of each open player (in signature) includes short seed

Instead of random bits
/ - \.

- E -

In this Talk

e Basic design of Picnic
* Optimizations
* Security Analysis

Security Analysis ([D,Nadler 2018])

Consider Picnic variant for 128-bit security
Attacker given signature with R=219 partial MPC runs

Each partial run r exposes 2 out of 3 player views
* Includes 2 random 128-bit seeds

3’rd seed unexposed — if revealed allows to easily
compute block cipher (signing) key

Attack attempt: given run, guess unknown 128-bit seed
* Complexity: 2%

Security Analysis ([D,Nadler 2018])

 Multi-target attack:
* Given signature, store all R=219 runs

 Guess unopened player’s seed for one of 219 runs (targets)
128

 Complexity: 2 2120

219
seed guess
seed; seed, . seed,q

* Problem: how to detect seed guess = seed_?

 Seems impossible: MPC protects unopened player privacy

Security Analysis ([D,Nadler 2018])

e Subtlety: MPC protects player’s input, but not generated
random bits

c,=a,b; r Dr
@ N@a\bﬁ@
DT,y

Cy=ay by a3 a3 0.6

* Assume PP, opened. Goal: determine r,
* Assume a,=b,=0
r;=c,Dr,

Security Analysis ([D,Nadler 2018])

Multi-target attack:

seed guess
128

« Complexity: §T9 ~ 2120 '// \\

seed; seed, : seed,q

Problem: how to detect seed guess = seed,?

* For each run: compute PRG bits produced by unopen player
(PRG(seed,)), sort in table

e Compute PRG(seed guess), search in table

In practice attack more complex
 For each run can compute different PRG output bits for

unopened player
 Simple sort-and-match doesn’t work

Security Analysis ([D,Nadler 2018])

Generalization: given S signatures with S:219 runs

 Signed by one or many users
2128 2120

* Attack complexity: $919 S
 E.g.given 2% signatures, security reduced from 22 to 27>

Weakness exists in several related cryptosystems

Fix (Picnic 2.0): salt PRG

* Playeriinrunr produces random bits using PRG(salt; ., seed,)

I,r?

* Forces attacker to choose salt when evaluating PRG
 Can only compare with 1 target

Conclusions

Picnic is a new promising post-quantum

signature scheme
 Alot of room for improvements

Optimizes (traditionally) theoretical crypto for

practical use
* Requires care: consider “real world” attacks

Thanks for your attention!

