TinyKeys: A New Approach to Efficient Multi-Party Computation

Carmit Hazay, Emmanuela Orsini, Peter Scholl and Eduardo Soria-Vazquez

Based on slides prepared by Peter Scholl and Eduardo Soria-Vazquez

Secure Multi-Party Computation (MPC)

Goal: Compute f(a,b,c,d)

Secure computation has many applications

- Auctions with private bids
- Privacy-preserving data mining
- Private health records
- Cryptographic key protection
- Secure statistical analyses
- Smart city research gender inequity
- ..

MPC - Past and Present

Feasibility results:

Back to the 80's [Yao86,GMW87,BGW88,CCD88,Kilian88,RB89,BMR90]

Broad focus on improving efficiency in past decade:

Two-party setting

[LP07,KS08,NO09,IKOPS11,NNOB12,HKK+14,ZRE15,RR16,GLNP15,WMK17, WRK17,HIV17,KRRW18],

Multi-party setting

[IPS08-09,DPSZ12,DKL+13,LPSY15,WRK17b,HSS17,KPR18,CGHIKLN18]

Properties of MPC Protocols

Computational model: Boolean/arithmetic circuits, RAM

Adversary model:

Passive (semi-honest) or active (malicious)

Threshold t (number of corrupted parties)

Efficiency:

Computation/ communication complexity Round complexity

Corruption Thresholds vs Communication Complexity of Practical MPC

Can we design concretely efficient MPC protocols where each honest party can be leveraged to increase efficiency?

Main Question

Can we trade off the number of corrupt parties for a more efficient, practical protocol?

Motivation: Large Scale, Dishonest Majority

Large number of users want to conduct surveys, auctions, statistical analysis, measure network activity, etc.

Dishonest Majority:

More parties ⇒ More trustworthy

MPC Setting in This Talk

Main focus:

• Concrete efficiency for large numbers of parties (e.g. n in 10s, 100s)

Adversary:

- Static, passive
- Dishonest majority (t > n/2)

Model of Computation:

- Boolean circuits
- Preprocessing phase

Our Results

New dishonest majority protocols exploiting more honest parties:

- **1.** Passive GMW-style MPC based on OT Up to 25x less communication compared with n-1 corruptions
- 2. Passive constant-round BMR-style MPC based on garbled circuits

 Up to 7x reduction in GC size and communication cost

Best improvements with 20+ parties when 70-90% are corrupt

The TinyKeys Technique

Warm-up: Distributed Encryption

Distributed Encryption: Can We Do Better?

Distributed Encryption with TinyKeys

Adv wins: Given H and y = He, distinguish y from random

Breaking Security: Regular Syndrome Decoding

Sample random $H \in \{0,1\}^{r \times m}$, and regular $e \in \{0,1\}^m$ of weight h

Adv wins: Given H and y = He, find $e \iff$ distinguish y from random

Hardness of Regular Syndrome Decoding

- Used for SHA-3 candidate FSB [Augot Finiasz Sendrier 03]
 - Not much easier than syndrome decoding ⇔ LPN
- Params: Message length r, key length ℓ , #honest h
- Statistically hard for small r/large h

[Saa07] [MO15] [NCB11] [Kir11] [BJMM12] [BLN+09] [BLP11] [BLP11] [NCB11]

[FS09]

TinyKeys: A Little Honesty Goes a Long Way

• Key length: $\ell \geq 1$

- Key length: $\ell \geq 5$
- Many challenges:
 - High Fan-Out
 - Enabling FreeXOR

(Tiny) GMW

Quick Recap of GMW

$$x = x_1 + \dots + x_n \in \{0,1\}$$

$$+ y = y_1 + \dots + y_n \in \{0,1\}$$

$$x + y = (x_1 + y_1) + \dots + (x_n + y_n)$$

$$x \wedge y = (x_1 + \dots + x_n) \cdot (y_1 + \dots + y_n)$$

"IKNP" OT Extension with Short Keys!

Using leaky OT for GMW-Style MPC

GMW: Communication Cost of Producing a Single Triple (200 Parties)

(Tiny) BMR

Garbling an AND Gate with Yao

u	V	W
0	0	0
0	1	0
1	0	0
1	1	1

Garbling an AND Gate with Yao

$$A_0, A_1$$
 C_0, C_1
 B_0, B_1

- $E_{A_0,B_0}(C_0)$ $E_{A_0,B_1}(C_0)$
- $E_{A_1,B_0}(C_0)$
- $E_{A_1,B_1}(C_1)$

- Pick two random keys for each wire
- Encrypt the truth table of each gate

Randomly **permute** entries

Invariant: evaluator learns **one** key per wire throughout the circuit

Distributed Garbling [BMR90]

$$(A_0^1, \dots, A_0^n), (A_1^1, \dots, A_1^n) \\ (B_0^1, \dots, B_0^n), (B_1^1, \dots, B_1^n)$$

$$(B_0^1, \dots, B_0^n), (B_1^1, \dots, B_1^n)$$

Each P_i gets A_0^i , $A_1^i \in \{0,1\}$ etc

Use distributed encryption:
$$E_{A,B}(C) = H(1 || A^1 || B^1)$$
 \bigoplus
 $H(n || A^n || B^n)$
 \bigoplus
 $(C^1 - C^n)$

For hash function $H: \{0,1\}^* \to \{0,1\}^n$

BMR with Short Keys

Reusing keys reduces security in regular syndrome decoding problem for:

High fan-out

Free-xor

Solution:

Splitter gates [Tate Xu 03] – can be garbled for free Local free-XOR offsets

BMR: Communication Cost of Garbling an AND Gate (100 Parties)

Conclusion and Future Directions

New technique for distributing trust (more honesty \Rightarrow shorter keys)

Improved protocols with 20+ parties

GMW: Up to 25x in communication (vs multi-party [DKSSZZ17])

BMR: Up to 7x in communication (vs [BLO16])

Follow-up work: Active Security – TinyKeys for TinyOT (Asiacrypt '18)

Future challenges:

Optimizations, more cryptanalysis (conservative parameters atm)

Thank you! Questions?

Paper: https://ia.cr/2017/214 [Full version]

TinyKeys: A New Approach to Efficient Multi-Party Computation

Carmit Hazay, Emmanuela Orsini, Peter Scholl and Eduardo Soria-Vázquez