Practical Solutions for Format-
Preserving Encryption

Mor Weilss

Joint work with Boris Rozenberg and Muhammad Barham

Research conducted while all authors were at IBM Research Labs, Haifa

Why Format Preserving Encryption?

/’, @C”écfrus,
(] ~_
NS
\
D D HOS;TAL
0000|0000
NI~y 0o O]

AMBULANCE [|

Why Format Preserving Encryption?

/’,
W
D D HOS;TAL
0000|0000
NI~y 0o O]

AMBULANCE [|

Why Format Preserving Encryption?

7
-
L Problem (1): encrypted entry
A A — B . .
Ul incompatible with database entry
0 0 Fresm structure
| oo .. . Non-solution (1): generate new tables
gooo 00 oooo
EES g 0o [n

AMBULANCE [|

Why Format Preserving Encryption?

@

HOSPITAL

oooo
I]Eli

oooo
N~

AMBULANCE [|

OOoOoOd
DoOooo

Why Format Preserving Encryption?

@

HOSPITAL

oooo
N~

AMBULANCE [|

OOoOoOd
DoOooo

Why Format Preserving Encryption?

S Problem (2): encrypted entry incompatible
— with applications using data

| . Non-solution (2): re-write applications

DD HOSPITAL
0000|0000
NI~y EIEID]

AMBULANCE [|
.

Talk Outline

Definitions

Methodology for format-preserving encryption of
general formats

Analysis of known constructions
GFPE
Optimizations for large formats

Format-Preserving Encryption: Definition

* A deterministic private-key Encryption Scheme II:
— Message space M
— Randomized KeyGen: N —» K
— Deterministic Enc: X XM - C
— Deterministic Dec: K X C - M
* Notation: Enc, = Enc(k,'), Dec;, = Dec(k,)
* Encryption key random and secret = encryption “hides”
plaintext
e Standard encryption: ciphertexts usually “look like
garbage”, possibly causing
— Applications using data to crash
— Tables designed to store data unsuitable for storing encrypted data
« = Sometimes plaintext properties should be preserved

 Format-Preserving Encryption (FPE): M = C
— Ency, is a permutation over plaintext space M
— Ciphertexts have same format as plaintexts!

FPE: Definition (cont.)

 Correctness: foreveryk € KX andeverym € M
Deck(Enck(m)) =m
* Secrecy:
— For secret and random k € K
— Hierarchy of security notions [BRRS 09]

— Strongest: random k = Enc;, close to pseudorandom
permutation

|II

* An “overkill” for many typical applications

— Guaranteed security against (improbable) attacks incurs expensive
overhead

— Weakest: Message Recovery

* Only require that adversary cannot completely recover message
— Even given advantageous distribution over M’

* Very weak: adversary may learn some message properties

What We Know About FPE

 Term coined by Terence Spies, Voltage Security’s CTO
* First formal definitions due to [BRRS 09]

* Constructions for specific formats
— Social Security Numbers (SSNs) [Hoo 11]
— Credit Card Numbers (CCNs)
— Dates [LJLC 10]

e Drawbacks:

— Designed for specific formats (different scheme for every format)

— New encryption techniques, little (if any) security analysis

Useful for
general-
format FPE

— Methods described as early as 1981
— FFX [BRS 10], BPS [BPS 10] submitted to NIST for consideration

Format-Preserving Encryption for
General (Complex) Formats

Techniques for General-Format FPE (Part 2)

e Rank-then-Encipher (RtE) [BRRS 09]: general-format
FPEs from int-FPE

— Order M arbitrarily: rank: M - {1,.., M}

Techniques for General-Format FPE (Part 2)

e Rank-then-Encipher (RtE) [BRRS 09]: general-format
FPEs from int-FPE

— Order M arbitrarily: rank: M - {1,.., M}

1 2 3 4 5 6 7 8

Techniques for General-Format FPE (Part 2)

e Rank-then-Encipher (RtE) [BRRS 09]: general-format
FPEs from int-FPE

— Order M arbitrarily: rank: M - {1,.., M}

— To encrypt message m:
 Rank m:i = rank(m)
* Encipheri:j = intE(K,i)
e Unrank j: ¢ = rank™1(j)

1 2 3 4 5 6 7 8

/

Techniques for General-Format FPE (Part 2)

e Rank-then-Encipher (RtE) [BRRS 09]: general-format
FPEs from int-FPE

— Order M arbitrarily: rank: M - {1,.., M}

— To encrypt message m:
 Rank m:i = rank(m)
* Encipheri:j = intE(K,i)
e Unrank j: ¢ = rank™1(j)

1 2 3 4 5 6 7 8

Techniques for General-Format FPE

Rank-then-Encipher (RtE) [BRRS 09]: general-format
FPE from integer-FPE

— Order M arbitrarily: rank: M - {1,.., M}

— To encrypt plaintext m:
 Rank m: i = rank(m)
* Encipheri:j = integerEnc; (i)
* Unrank j: ¢ = rank™1(j)

Security: from security of integer-FPE

— rank not meant to, and does not, add security
Efficiency: only if rank, unrank are efficient

Main challenge (1): design efficient rank procedure
— “Meta” ranking technique for regular languages [BRRS 09]

Main challenge (2): representing formats

FPEs for General Formats:
Previous solutions

Simplification-Based FPE [MYHC 11,MSP 11]

* Represent formats as union of simpler sub-formats

— Plaintexts interpreted as strings

— M divided into subsets M3, ..., M, defined by
* Length
* Index-specific character sets

* Encrypt each M; separately using Rank-then-Encipher

— Ranking computed using generalized lexicographic ordering

Frame: format of valid names \
Name: 1-4 space-separated words
Word: upper case letter followed by 1-15 lower case letters
Subsets:
M contains Al
M, contains Tal

Mz contains Muthuramakrishna

k M ¢ contains El Al /

Simplification-Based FPE: Security
Concerns

* The problem: encryption preserves plaintext-specific
properties
— Reason: each sub-format M; encrypted separately
— “John Doe” can encrypt “Jane Roe” but not “Johnnie Dee”

— If only one of them is possible, adversary knows plaintext for
sure

e Simplification-based FPE is Message-Recovery insecure
IWRB 15]
— MR (message recovery) is the weakest notion
— Implies insecurity according to other FPE security notions

* Reason: ciphertext length reveals plaintext length, can be
used to recover message

Simplification-Based FPE: Experimental Results

* Our experiments performed on 1M records of the Federal
Election Commission (FEC) reports of 2008-2012
— Regulates campaign finance legislation in the US
— Report lists all donors over $200:

* Name
* Town
* Employer
* Job title
» Attack model reflects typical threat
— Data stored at remote server
— Attacker has access to all or part of database
— No access to secret encryption key

— A may have prior knowledge

Simplification-Based FPE: Experimental

Results (Cont.)
When A recovers only name column

N <10 >2%
5% €— 10<N <100

93%<€— 100 < N < 21,930

* If we're lucky — Bar in 7% of donors whose encryptions match
only 100 entries

Simplification-Based FPE: Experimental
Results (Cont.)

When A recovers name and town columns
1<N<<2

9% €«— 2<N<10

100 < N < 3334—> 56% 28% €— 10 < N < 100

* If we're lucky, Bar in 7% of donors whose encryptions match only 2
entries

* Pretty likely that Bar in 44% of donors whose encryptions match
only 100 entries

Simplification-Based FPE: Experimental

Results (Cont.)

When A recovers entire database
N=1

& 10 < N < 250
14%

15% €= 2<N<10

=
|
N

* For all donors: encryptions match < 250 entries!

* Most likely Bar in 71% of donors whose encryption matches only 2
entries!

GFPE

GFPE [WRB 15]
FPE “Wish List”

Functionality, efficiency:
— Simple method of representing formats
— Efficient rank, unrank procedures

Security: preserve only format-specific properties
— Hide all plaintext-specific properties

The Scheme:

Encryption\decryption using Rank-then-Encipher
— Support integer-FPEs for integral and almost integral domains

Main challenge: user-friendly format representation
— Scheme is user-oriented

Structure: formats represented using bottom-up framework
— “Basic” building-blocks (primitives)
* Usually “rigid” formats (e.g., SSNs, CCNs, dates, fixed-length strings...)
* Also “less rigid” formats (e.g., variable-length strings)
— Operations used to construct complex formats

GFPE: Representing Formats

« “Basic” building-blocks (primitives):
- Tupper = {A,B,...,.Z}
— Fiower = length-k lower-case letter strings, 1 < k < 15
— Fssn, = social-security numbers (SSNs)

* Operations:
— Concatenation:
e F=F, .- Fp
— Words: Fora = Fupper * Flower
c F=F,-d{ Fy+..-dp_qF,(dq,...,dy—1 are delimiters)
— Range: F = (F1 - A)*, min < k < max
« Names: Fgme = (Fivora - Space)® forl <k < 4
— Union: F = F; U---UF,
* “Names or SSNs”": F = F, y;ime U Feany

Example: Representing Addresses

name house # street city zZip
Frame = (Fuora - Space)’ for 1 < k < 4 (range)
Foum = {1, ...,100} (integral domain)
Fip =10,1,. .., 9¥° (fixed length string)
Valid addresses obtained through concatenation:

?add — Tname) Tnum) Tname) Tname) :inp
name house# street city Zip

GFPE: Encryption

Use Rank-then-Encipher method
— Use “off-the-shelf” integer-FPE schemes
— Inherit security of underlying integer-FPE

Challenge: how to rank and unrank?
Define ranking for primitives and operations
Rank of compound formats computed top-down:

— Parse string to components
— Delegate substring ranking to format components
— “Glue” ranks together using ranking for operations

Example: Ranking Concatenation

T:T1°d°j:2
m=mq,-d-m,

Example: Ranking Concatenation
T — :Fl . d . TZ

m=mq-d-m,

r=r; + 1y @size()

Scale by size of sub-formats

GFPE: Supporting Large Formats

* Scheme supports integer-FPEs [BR 02,BRRS 09]

— Only provably secure schemes

* Integer-FPEs are inefficient for large domains!

— Require factoring domain size

e Supporting large formats: keep formats small

— Divide large formats, encrypt each sub-format separately

— Minimize security loss by “hiding” plaintext-specific properties:

*| Division according to format structure

* Maximizing sub-format size

<— Main challenge!

— maxSize determined by user-defined performance constraints

Example: Dividing Address Format

name house # street city zZip
* Valid addresses obtained through concatenation:

——

. Y I . .
Tadd I j:name Tnum -.Tnamei E:Fname TZlP:
\ name house #ii street} i city zip |

———
———

———

. Smaller maxSlze = further division

— E.g., F,ume divided according to number of words in name

Security of GFPE: Large Formats

* Format division introduces complications in ranking and
unranking

— Generalize rank, unrank to lists of ranks

 GFPE format-division strategy:
— Usually hides all plaintext-specific properties

— Small maxSize = may preserve some properties in huge
formats

* But properties defined by “semantic” sub-format, not “cosmetic”
plaintext properties

— Maximizes sub-format size

* Minimizes possibilities of attacks

 “Wise” choice of parameters = “reasonable” tradeoff

Security of GFPE: Large Formats (2)

Given user-define efficiency constraints, we can evaluate
security loss

Experimental results: compared GFPE with simplification-
based FPE

— On 1M records of the Federal Election Commission (FEC) reports
of 2008-2012

Simplification-based FPE: every encrypted record
matches at most 250 records

GFPE: when maximizing efficiency

— 99% encrypted records match > 1000 records
— 94% encrypted records match > 10,000 records
— 67% encrypted records match > 100, 000 records

Concurrent Work: libFTE [LDJRS 14}

Library for format-preserving and format transforming
encryption of general formats

— Also based on Rank-then-Encipher
e Support less integer-FPE schemes

— Formats represented using Regular Expressions
— Ranking uses automatons (deterministic or non-deterministic)

Different goal: developer-oriented
— Defining new formats
— Choosing “right” scheme to use

Same security guarantee

Comparable “best case” efficiency
— libFTE “worst case” can be much worse

Summary

* Goal: FPE for general formats
* Analyze existing schemes

— Show security vulnerabilities
— Inefficiencies also exist

* Propose a new FPE scheme for general formats
— Based on Rank-the-Encipher

— Simple and efficient methodology of representing and ranking
formats

— Flexible scheme:
e Can use any FPE for integral or almost integral domains
* Easy to add new primitives: just provide rank, unrank
e User-controlled efficiency-security tradeoff (through maxSize param)

