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Hash Functions

A hash function H: {0,1}*-> {0,1}" maps inputs of
arbitrary length into outputs of fixed length n

Have many applications in data structures and
algorithms



Cryptographic Hash Functions

A cryptographic hash function is hash function with
stronger requirements
Have many applications (e.g., protocols, file integrity...)

Requirements:

* Collision resistance: It is hard to find M and M’ such that
M#M’ and H(M)=H(M’)

 Preimage resistance: Given an arbitrary n-bit string V, it is
hard to find any M such that H(M)=Y

* Second preimage resistance: Given an arbitrary input M, it is
hard to find MM’ such that H(M)=H(M’)



ldeal Hash Functions

 An ideal hash function: “random oracle” that
randomly picks the output for a new query M (and
records the answer for consistency)

H

N —> > H(M)




ldeal Hash Functions

* Preimage resistance

e Brute force: Given n-bit string Y, evaluate H(M) for
arbitrary M until H(M)=Y
e Complexity: 2"

H

?
N——> > H(M)= Y

 Second preimage resistance: 2" (brute force)



ldeal Hash Functions

* Collision resistance:
* Evaluate H on arbitrary inputs M;,M,,... until H(M;)=H(M)
* Complexity: 272 due to the birthday paradox



Hash Functions

Collision | Preimage |Second Preimage
Resistance | Resistance Resistance

ldeal H 2n/2 2N 2N




Concatenating Hash Functions

* Assume we have 2 hash function H; and H, of n bits
* We want a stronger construction
* Define a new hash function H,||H,

(HilH)(M)="| H (M) | Hy(M)

\ A J
| |

n n




Hash Functions

Collision | Preimage |Second Preimage
Resistance | Resistance Resistance

Ideal H 2n/2 pAL 2N

Ideal H,||H, 2" 22N 22N




Hash Functions in Practice

Apply a compression function h: {0,1}"x {0,1}° -> {0,1}"
in an iterated way

A standard way of building a hash function is the

Merkle-Damgard construction
e Usedin SHA-1, SHA-2,...

X—— h —— h(x,m)




lterated Hash Functions

* The Merkle-Damgard Construction:
1) Pad the message M to a multiple of b (with 1, and as
many 0’s as needed and the length of the message)
* 2)Divide the padded message into blocks m;m, ...m,

ml m2 cee ml_
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lterated Hash Functions

* The Merkle-Damgard Construction:

1) Pad the message M to a multiple of b (with 1, and as
many 0’s as needed and the length of the message)

2) Divide the padded message into blocks m;m, ...m,
3) Set x, = IV. For i=1 to L, compute x.=h(x,_,,m)

4) Output x,




In This Talk

Analyze the security of Merkle-Damgard

« We assume that the compression function is ideal (acts
as a random oracle)

Focus on the concatenation of two Merkle-Damgard
hash functions MD H,||H,

Present some classical and new results on the
security of this construction
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Hash Functions (2003)

Collision | Preimage |Second Preimage
Resistance | Resistance Resistance
Ideal H 2n/2 pAL 2N
MD H 2n/2 2" 2"
Ideal H,||H, 2" 2%n 220

MD H,||H, 2 220 22




Hash Functions (Joux, 2004)

Collision | Preimage |Second Preimage
Resistance | Resistance Resistance
Ideal H 2n/2 pAL 2N
MD H 2n/2 2" 2"
Ideal H,||H, 2" 2%n 220

MD H,||H,
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Joux Multicollisions

Finding a collision in H requires 2"/2 work

What about 2-multicollision H(M,)=H(M,)= ... =H(M,t) ?
Can be computed in t-2"/2 work

*  Much more efficiently than in a random oracle

m, m;
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Application to the Concatenated Hash

A collision in H,||H,:
Messages M and M’ such that H,(M)=H,(M’) and
Hz(M)sz(M’)

Assume that H, is iterated

1) Find 2"/2 multicollision in H,
*  H/(M)=H,(M,)=...

2) Evaluate H,(M,), H,(M,),... and find H,(M;)=H,(M))
e Succeeds with high probability (birthday paradox)

Complexity: about n-2"/2



Hash Functions (2004)

Collision | Preimage |Second Preimage
Resistance | Resistance Resistance
Ideal H 2n/2 pAL 2N
MD H 2n/2 2" 2"
Ideal H,||H, 2" 2%n 220
MD H,[[H, N X AN
~n/2 ~7n ~n




Hash Functions (Kelsey and Schneier, 2005)

Collision | Preimage |Second Preimage
Resistance | Resistance Resistance
Ideal H 2n/2 2" 2"
MD H 2n/2 20 b
Ideal H,||H, 2" 2%n 220
MD H,[[H, N X AN
~n/2 ~7n ~n




Second Preimage Attack on MD

Given a (padded) message M=m_|m,]||...|m,
We want to find M’ such that H(M’)=H(M)

Start from IV and try different m’ until h(IV,m’)=x.

» Every trial succeeds with probability L/2"
e Succeeds after 2"/L trials

Output m’|m.,||...|[m,
Problem: foiled by MD message length padding

My m, Mg m,
IV —> h f— . >h —> ——> h}—>
0 X1 Xy X Xis1 X1 XL




Second Preimage Attack on MD

e Solution of Kelsey and Schneier (2005):
* Build an expandable message
e Start from IV and try different m” until h(x,m")=x.

My m, Mg m,
\Y; —> hfb— . h —> .. —>h}l—>
0 X1 Xy X Xi41 X1 XL
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Second Preimage Attack on MD

Solution of Kelsey and Schneier (2005):

Build an expandable message

Start from IV and try different m” until h(x,m’)=x.
Select message of appropriate length

My m, Mg m,
0 Xq Xy X Xis1 X|.1 X,
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Second Preimage Attack on MD

e Attack complexity (for L<2"/2):
* “Hitting” x.: 2"/L
* Total complexity: 2"/L

My m, Mg m
\ \
IV ?D hl—s . :Eﬂ __>>;>
0 X1 Xy X; Xis1 X1 XL
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Hash Functions (2005)

Collision | Preimage |Second Preimage
Resistance | Resistance Resistance
ldeal H 2n/2 2" 2"
MD H 2n/2 2" X
2"/L
Ideal H,||H, 2" 22N 22N

MD HillH, | X A\ X

~n/2 ~n ~n




Hash Functions (2015)

Collision | Preimage |Second Preimage
Resistance | Resistance Resistance

ldeal H 2n/2 2" 2"
MD H 2n/2 2" X
2"/L

Ideal H,||H, 2" 22N 22N
MD H; [H, X 2 A\
~n/2 ~n 2}&1

MD H,||H, is weaker than ideal H !




Second Preimage Attack on Concatenated MD

* A second preimage for H,||H,:
* Given M, find M’ such that H,(M’)=H,(M) and H,(M’)=H,(M)

* We want an algorithm more efficient than 2"



Second Preimage Attack on Concatenated MD

Given a (padded) message M=m_|m,]|...|m,
Require: h,(x,m’)=x, and h,(y,m’)=y.

Every trial succeeds with probability L/22"
Attack succeeds after 22"/L> 2" trials (L<2")
Standard approach is inefficient
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A Different Approach

We will select a single target (x,y,) that is much easier
to hit with a specially crafted message w,||...||w
Define: h*(x,w||...[w;)= h(...h(h(x,w,),w,)...)

Require: h; (x,w|l...[lw;)=x; and h,"(y,w,]|...[lw;)=y

|V1 T hl — h1 ‘ﬂ e ﬁh\lﬁ ey  — hl%
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A Different Approach

* Fix to O the message block input to h
* Define f(x)=h(x,0)

S

X — h

0

— h(x,0)

X—s f —f(x)




A Different Approach

f(x) is a mapping from n bits to n bits
Define a graph:

* Nodes are the states

* There is an edge from x to vy if f(x)=y u
f can be iterated f(...f(f(x))...)

Interested in states obtained after applying f many

times




Deep Iterates

e Let D<2"/2 be a parameter

* Definition: A deep iterate is a node of depth (at least) D
in the graph




Second Preimage Attack on Concatenated MD

* Define f,(x)=h,(x,0) and f,(y)=h,(y,0)
* Target: x.deep iterate in f, and y. deep iterate in f,
* Require: hy" (x,wy]l...[w;)=x; and h, " (y,wq]l...[w;)=y,
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Deep Iterates

 Develop an algorithm that given arbitrary states x, y
and a deep iterates X/, y’, finds w;,...,w; such that
hy* (%, wyll...]lw;)=x" and h*(y, wy]|...llw;)=y" with less
than 2" work
* For an arbitrary nodes x’, y’ this requires 22" work !

Wy l...w;

............. > X
X

Wy |l...w;

............. > Vv’
Y Y



The Algorithm

Algorithm: for different w, values, evaluate messages of

the form w,||0...]|0 from x and y

e Store all encountered states

e Stop on a collision with a previous evaluated state (look ahead)

Repeat until success:

*  h;*(x, wg||0...]]0)=x" and h*(y, w,]|0...]|0)=y” with same message
length
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The Algorithm
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The Algorithm
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The Algorithm
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The Algorithm




The Algorithm

Algorithm: Evaluate messages of the form w,||0...]|0
from x and y until a collision with a previous
evaluated state

Reason for efficiency: “look ahead”

w,|[0...0

............. » X’

w,|[0...0

............. > Vv’
Y y



Hash Functions (2015)

Collision | Preimage |Second Preimage
Resistance | Resistance Resistance

ldeal H 2n/2 2" 2"
MD H 2n/2 2" X
2"/L

Ideal H,||H, 2" 22N 22N
MD H; [H, X 2 A\
~n/2 ~n 2}&1

MD H,||H, is weaker than ideal H !




Conclusions

We showed that concatenation of two Merkle-Damgard
hash functions is weaker than a single ideal hash

function

 HAIFA mode is stronger than the concatenation of two
Merkle-Damgard hash functions

Attacks are not practical (for hash functions used in
practice n>160)

New insight into the security of hash functions

New application of random mappings to cryptanalysis of
concatenated hash functions



Thanks for your attention!



