On the Security of Concatenating Hash Functions: Classical and New Results Itai Dinur **Ben-Gurion University** #### Hash Functions - A hash function H: {0,1}*-> {0,1}ⁿ maps inputs of arbitrary length into outputs of fixed length n - Have many applications in data structures and algorithms ## Cryptographic Hash Functions - A cryptographic hash function is hash function with stronger requirements - Have many applications (e.g., protocols, file integrity...) - Requirements: - Collision resistance: It is hard to find M and M' such that M≠M' and H(M)=H(M') - Preimage resistance: Given an arbitrary n-bit string Y, it is hard to find any M such that H(M)=Y - Second preimage resistance: Given an arbitrary input M, it is hard to find M≠M' such that H(M)=H(M') #### Ideal Hash Functions An ideal hash function: "random oracle" that randomly picks the output for a new query M (and records the answer for consistency) #### Ideal Hash Functions - Preimage resistance - Brute force: Given n-bit string Y, evaluate H(M) for arbitrary M until H(M)=Y - Complexity: 2ⁿ Second preimage resistance: 2ⁿ (brute force) #### Ideal Hash Functions #### Collision resistance: - Evaluate H on arbitrary inputs M₁,M₂,... until H(M_i)=H(M_i) - Complexity: 2^{n/2} due to the birthday paradox ## Hash Functions | | | Preimage
Resistance | Second Preimage
Resistance | |---------|------------------|------------------------|-------------------------------| | Ideal H | 2 ^{n/2} | 2 ⁿ | 2 ⁿ | ## Concatenating Hash Functions - Assume we have 2 hash function H₁ and H₂ of n bits - We want a stronger construction - Define a new hash function $H_1 \parallel H_2$ ## Hash Functions | | Collision
Resistance | Preimage
Resistance | | |---------------------------------------|-------------------------|------------------------|------------------------| | Ideal H | 2 ^{n/2} | 2 ⁿ | 2 ⁿ | | Ideal H ₁ H ₂ | 2 ⁿ | 2 ²ⁿ | 2 ²ⁿ | #### Hash Functions in Practice - Apply a compression function h: {0,1}ⁿ x {0,1}^b -> {0,1}ⁿ in an iterated way - A standard way of building a hash function is the Merkle-Damgard construction - Used in SHA-1, SHA-2,... #### Iterated Hash Functions - The Merkle-Damgard Construction: - 1) Pad the message M to a multiple of b (with 1, and as many 0's as needed and the length of the message) - 2) Divide the padded message into blocks m₁m₂ ...m_L #### **Iterated Hash Functions** - The Merkle-Damgard Construction: - 1) Pad the message M to a multiple of b (with 1, and as many 0's as needed and the length of the message) - 2) Divide the padded message into blocks m₁m₂ ...m_L - 3) Set $x_0 = IV$. For i=1 to L, compute $x_i = h(x_{i-1}, m_i)$ - 4) Output x_L #### In This Talk - Analyze the security of Merkle-Damgard - We assume that the compression function is ideal (acts as a random oracle) - Focus on the **concatenation** of two Merkle-Damgard hash functions MD $H_1 \parallel H_2$ - Present some classical and new results on the security of this construction # Hash Functions (2003) | | Collision
Resistance | Preimage
Resistance | Second Preimage
Resistance | |---------|-------------------------|------------------------|-------------------------------| | Ideal H | 2 ^{n/2} | 2 ⁿ | 2 ⁿ | | MDH | 2 ^{n/2} | 2 ⁿ | 2 ⁿ | | Ideal H ₁ H ₂ | 2 ⁿ | 2 ²ⁿ | 2 ²ⁿ | |---------------------------------------|-----------------------|------------------------|------------------------| | $MD H_1 H_2$ | 2 ⁿ | 2 ²ⁿ | 2 ²ⁿ | # Hash Functions (Joux, 2004) | | Collision
Resistance | Preimage
Resistance | Second Preimage
Resistance | |---------|-------------------------|------------------------|-------------------------------| | Ideal H | 2 ^{n/2} | 2 ⁿ | 2 ⁿ | | MDH | 2 ^{n/2} | 2 ⁿ | 2 ⁿ | | Ideal H ₁ H ₂ | 2 ⁿ | 2 ²ⁿ | 2 ²ⁿ | |---------------------------------------|-----------------------|------------------------|------------------------| | $MD H_1 H_2$ | 20 | 2 2n | 2 %n | #### Joux Multicollisions - Finding a collision in H requires 2^{n/2} work - What about 2^t -multicollision $H(M_1)=H(M_2)=...=H(M_2t)$? - Can be computed in t·2^{n/2} work - Much more efficiently than in a random oracle ## Application to the Concatenated Hash $H_1(M_1)=H_1(M_2)=...$ - A collision in $H_1 || H_2$: - Messages M and M' such that H₁(M)=H₁(M') and $H_2(M)=H_2(M')$ Assume that H₁ is iterated - 1) Find 2^{n/2} multicollision in H₁ - $H_1(M_1)=H_1(M_2)=...$ - 2) Evaluate $H_2(M_1)$, $H_2(M_2)$,... and find $H_2(M_i) = H_2(M_i)$ - Succeeds with high probability (birthday paradox) - Complexity: about n·2^{n/2} # Hash Functions (2004) | | Collision
Resistance | Preimage
Resistance | Second Preimage
Resistance | |---------|-------------------------|------------------------|-------------------------------| | Ideal H | 2 n/2 | 2 ⁿ | 2 ⁿ | | MDH | 2 ^{n/2} | 2 ⁿ | 2 ⁿ | | Ideal H ₁ H ₂ | 2 ⁿ | 2 ²ⁿ | 2 ²ⁿ | |---------------------------------------|--------------------------|------------------------|------------------------| | $MD H_1 \ H_2$ | 20 | 2 2n | 2 ² n | | | ≈2 ^{n/2} | ≈2 ⁿ | ≈2 ⁿ | # Hash Functions (Kelsey and Schneier, 2005) | | Collision
Resistance | Preimage
Resistance | Second Preimage
Resistance | |---------|-------------------------|------------------------|-------------------------------| | Ideal H | 2 ^{n/2} | 2 ⁿ | 2 ⁿ | | MDH | 2 ^{n/2} | 2 ⁿ | ≥ n | | Ideal H ₁ H ₂ | 2 ⁿ | 2 ²ⁿ | 2 ²ⁿ | |---------------------------------------|--------------------------|------------------------|------------------------| | $MD H_1 \ H_2$ | 20 | 2 2n | 2 ² n | | | ≈2 ^{n/2} | ≈2 ⁿ | ≈2 ⁿ | - Given a (padded) message $M=m_1||m_2||...||m_L$ - We want to find M' such that H(M')=H(M) - Start from IV and try different m' until h(IV,m')=x_i - Every trial succeeds with probability L/2ⁿ - Succeeds after 2ⁿ/L trials - Output m'||m_{i+2}||...||m_L - Problem: foiled by MD message length padding - Solution of Kelsey and Schneier (2005): - Build an expandable message - Start from IV and try different m' until h(x,m')=x_i - Solution of Kelsey and Schneier (2005): - Build an expandable message - Start from IV and try different m' until h(x,m')=x_i - Select message of appropriate length - Attack complexity (for L<2^{n/2}): - "Hitting" x_i: 2ⁿ/L - Total complexity: 2ⁿ/L # Hash Functions (2005) | | Collision | Preimage | Second Preimage | |---------|-------------------------|-----------------------|-----------------------| | | Resistance | Resistance | Resistance | | Ideal H | 2 n/2 | 2 ⁿ | 2 ⁿ | | MDH | 2 ^{n/2} | 2 ⁿ | 2 ⁿ /L | | Ideal H ₁ H ₂ | 2 ⁿ | 2 ²ⁿ | 2 ²ⁿ | |---------------------------------------|--------------------------|------------------------|------------------------| | $MDH_1 H_2$ | 20 | 280 | 2 ² n | | | ≈2 ^{n/2} | ≈2 ⁿ | ≈2 ⁿ | ## Hash Functions (2015) | | Collision
Resistance | Preimage
Resistance | Second Preimage
Resistance | |---------------------------------------|-------------------------|------------------------|-------------------------------| | Ideal H | 2 ^{n/2} | 2 ⁿ | 2 ⁿ | | MDH | 2 ^{n/2} | 2 ⁿ | Z n | | | | | 2 ⁿ /L | | | 1 | | | | Ideal H ₁ H ₂ | 2 ⁿ | 2 ²ⁿ | 2 ²ⁿ | | MD H ₄ H ₂ | × | 2 2n | 22n | • MD $H_1 \parallel H_2$ is weaker than ideal H! ## Second Preimage Attack on Concatenated MD - A second preimage for $H_1 \parallel H_2$: - Given M, find M' such that $H_1(M')=H_1(M)$ and $H_2(M')=H_2(M)$ - We want an algorithm more efficient than 2ⁿ ### Second Preimage Attack on Concatenated MD - Given a (padded) message M=m₁||m₂||...||m_L - Require: $h_1(x,m')=x_i$ and $h_2(y,m')=y_i$ - Every trial succeeds with probability L/2²ⁿ - Attack succeeds after 2²ⁿ/L > 2ⁿ trials (L<2ⁿ) - Standard approach is inefficient ## A Different Approach - We will select a single target (x_i,y_i) that is much easier to hit with a specially crafted message w₁||...||w_i - Define: $h^*(x,w_1||...||w_i) = h(...h(h(x,w_1),w_2)...)$ - Require: $h_1^*(x,w_1||...||w_j)=x_i$ and $h_2^*(y,w_1||...||w_j)=y_i$ ## A Different Approach - Fix to 0 the message block input to h - Define f(x)=h(x,0) ## A Different Approach - f(x) is a mapping from n bits to n bits - Define a **graph**: - Nodes are the states - There is an edge from x to y if f(x)=y - f can be iterated f(...f(f(x))...) - Interested in states obtained after applying f many times $$X \xrightarrow{f} \cdots \xrightarrow{f} f$$ ### Deep Iterates - Let D≤2^{n/2} be a parameter - Definition: A deep iterate is a node of depth (at least) D in the graph ## Second Preimage Attack on Concatenated MD - Define $f_1(x)=h_1(x,0)$ and $f_2(y)=h_2(y,0)$ - Target: x_i deep iterate in f₁ and y_i deep iterate in f₂ - Require: $h_1^*(x,w_1|...|w_j)=x_i$ and $h_2^*(y,w_1|...|w_j)=y_i$ #### Deep Iterates - Develop an **algorithm** that given **arbitrary states x**, **y** and a **deep iterates x**', **y**', finds **w**₁,...,**w**_j such that $h_1*(x, \mathbf{w}_1||...||\mathbf{w}_j)=x'$ and $h*(y, \mathbf{w}_1||...||\mathbf{w}_j)=y'$ with less than **2**ⁿ work - For an arbitrary nodes x', y' this requires 2²ⁿ work! - Algorithm: for different w_1 values, evaluate messages of the form $w_1 ||0...||0$ from x and y - Store all encountered states - Stop on a collision with a previous evaluated state (look ahead) - Repeat until success: - $h_1^*(x, w_1||0...||0)=x'$ and $h^*(y, w_1||0...||0)=y'$ with same message length - Algorithm: Evaluate messages of the form w₁||0...||0 from x and y until a collision with a previous evaluated state - Reason for efficiency: "look ahead" # Hash Functions (2015) | | Collision
Resistance | Preimage
Resistance | Second Preimage
Resistance | |---------------------------------------|-------------------------|------------------------|-------------------------------| | Ideal H | 2 ^{n/2} | 2 ⁿ | 2 ⁿ | | MDH | 2 ^{n/2} | 2 ⁿ | 2 ⁿ /L | | Ideal H ₁ H ₂ | 2 ⁿ | 2 ²ⁿ | 2 ²ⁿ | | Ideal H ₁ H ₂ | 2 ⁿ | 2 ²ⁿ | 2 ²ⁿ | |---------------------------------------|--------------------------|------------------------|-------------------------| | $MD H_1 \parallel H_2$ | 20 | 280 | 2 ² n | | | ≈2 ^{n/2} | ≈2 ⁿ | ≈ <mark>2</mark> n | | | | | 2 ^{3n/4} (opt) | • MD $H_1 \parallel H_2$ is weaker than ideal H! #### Conclusions - We showed that concatenation of two Merkle-Damgard hash functions is weaker than a single ideal hash function - HAIFA mode is stronger than the concatenation of two Merkle-Damgard hash functions - Attacks are not practical (for hash functions used in practice n≥160) - New insight into the security of hash functions - New application of random mappings to cryptanalysis of concatenated hash functions Thanks for your attention!